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Abstract In the context of insiders, preventive security measures have
a high likelihood of failing because insiders ought to have sufficient privi-
leges to perform their jobs. Instead, in this paper, we propose to treat the
insider threat by a detective measure that holds an insider accountable
in case of violations. However, to enable accountability, we need to create
causal models that support reasoning about the causality of a violation.
Current security models (e.g., attack trees) do not allow that. However,
they are a useful source for creating causal models. In this paper, we
discuss the value added by causal models in the security context. Then,
we capture the interaction between attack trees and causal models by
proposing an approach to extract the latter from the former. Our ap-
proach considers insider-specific attack classes like collusion attacks and
causal-modeling-specific properties like preemption relations. We present
an evaluation of the correctness of the product, i.e., the resulting causal
models and the efficiency of the process, i.e., the extraction approach.

1 Introduction

Security and privacy are crucial in systems that deal with sensitive customer
assets (e.g., trade secrets). Adversaries are constantly trying to compromise
the integrity, confidentiality, or availability of such assets. These attempts are
carried out by insiders or outsiders of the system. In this paper, we are chiefly
interested in insiders, specifically malicious insiders such as a rogue employee.
In fact, according to the Cyber Security Intelligence Index by IBM X-Force
Research [28], insiders carried out 60% of all attacks in 2015.

Insiders are mostly not malicious. Typically, there is a trust base between a
company and its employees, not to mention the legal contracts an employee signs
upon starting a job. However, an insider can, among other things, tamper with
records in the database, leak or delete documents. Consequently, such acts may
lead to reputation damage, legal costs, and reimbursements [12]. Reports show
that insiders carry out the most significant, costly and lengthy attacks [28,12].
Such attacks are likely to succeed, and their impact is significant [30].

In the context of insiders, preventive measures have a high likelihood of failing
because insiders ought to have sufficient privileges for their jobs. They may abuse
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their privileges. The term “abuse” makes this problem especially hard due to the
unpredictable nature of insiders and the necessity of their privileges.

We propose addressing the insider threat using a detective approach [35]
that helps a company to attribute malicious acts. Detective approaches, such
as accountability, provide a mechanism to answer questions about security inci-
dents (e.g., “why was the document leaked?”) and attribute responsible parties
a posteriori. Attack attribution is the process of identifying the perpetrator of
a cyber-attack [21]. This mechanism increases forensic readiness [29,33], and
establishes the basis for taking legal action against an attacker [9]. As such,
attribution can be considered in many cases as a deterrent measure [9,32].

Insider attack attribution does not inherit the challenges facing attribution
such as tools prepositioning [36], and the anonymity of the Internet [9]. Still,
there are no robust approaches to attribute insider attacks. Attack attribution
surveys [36,9,32] show that most of the attribution literature focused on the IP
level in network attacks, which is still inconclusive. Instead, in this paper, we
tackle insider attacks attribution through an automated reasoning capability.

Accountability, fundamentally, means preserving evidence and supporting
reasoning about the causal relationships [7] within the collected evidence. Actual
causality, as an essential ingredient for accountability, was studied in different
fields of computer science; however, it was not really utilized in security [13]. For
that, we mainly adopt the definition of Halpern and Pearl (HP) [6,7] to infer
actual causality. HP is formal foundation to answer causal queries in a way that
matches the human way of thinking. This enables us to explain insider attacks.
However, the first challenge towards this adoption is the creation of the causal
models which are required by HP. We propose to solve this problem by relating
causal models to to security models such as attack trees [31].

Graphical security models [16] such as attack trees (AT) [31] are appealing
to scientists for their formal syntax and semantics [20,27], to managers for their
visual nature, and to engineers for their systematic categorization of threats.
Thus, an AT is used for the purposes of risk estimation, cost approximation, and
defense planning. We aim to add forensics analysts to the list of AT beneficiaries,
and supporting causality inference to the list of purposes. However, ATs are not
readily sufficient to be used for after-the-fact forensic analysis.

Our goal is to create models that attribute blame to a human, i.e., an insider.
However, an AT does not usually include potential attackers (suspects). This is
what differentiates ATs from causal models. Thus, we analyze the implications of
adding suspects to ATs. Then, we detail a complete approach to extract causal
models from AT and show their utilization to infer causality automatically[11].

We focus on models for insider threat for two reasons. Firstly, because we
think that accountability is a deterrent measure against insider threats. Sec-
ondly, while creating those models, we can exploit the unique property of insider
threats, i.e., the ability to identify suspects beforehand. Our contributions are: a)
A proposal of utilizing causal models in insider threat attribution and forensics.
This is supported by a discussion of the usefulness of such models in the context
of insiders. b) An extraction approach of causal models from attack trees. This
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transformation enables attributing suspects, creating exogenous variables, recom-
mending preemption relations, and generating ready-to-analyze models. c) An
open-source tool (ATCM ) that implements the approach with an evaluation of
the efficiency, the validity of the approach, and the effectiveness of the model.

2 Preliminaries

We review the formalism of attack trees in Section 2.1, we elaborate on the
foundations of causality in Section 2.2, with an example in Section 2.3.

2.1 Foundations of Attack Trees

AT [31] model potential security threats within a system and the steps necessary
to perform an attack. The root node contains the ultimate goal of an attack
tree while the sub-nodes describe activities that are necessary to conduct the
respective parent activity/goal. The relationship between a node and its children
can be either OR or AND (represented by a circular line below the node).

Depending on the required purpose, attack trees have been defined using
different semantics such as multi-set semantics [20], linear-logic semantics [8],
timed automata [17], Markov decision process [2], and propositional logic [27].
In this paper, we aim to reason about the actual causality relations among binary
events, i.e., whether the occurrence or absence of a specific event was the cause
of another event. Hence, we use the equation-propositional semantics similar
to [27]. Such formalism is simple, expressive, and general. The main difference
between our definition and the definition in [27] is that we create a propositional
formula for each node in the tree (excluding the leaves), while the whole tree is
represented with a minimized formula of the root in [27].

For the formal definition, we follow Mauw and Oostdijk’s [20] way of defin-
ing an attack tree. However, we adapt it to use propositional logic semantics.
Formally, Definition 1 expresses attack trees.

Definition 1. Attack Tree is a 4-tuple AT = (N ,→,n0, [[n]]) where

– N is a finite set of attack nodes
– n0 ∈ N is the root node
– →⊆ N ×N is a finite set of acyclic relations.
– [[n]] is a function that returns a propositional formula for each n ∈ N , the

formula represents the semantical dependency of a node on its children nodes.

2.2 Actual Causality

HP is the influential formal framework proposed by Joseph Halpern and Judea
Pearl [7] to infer actual causality. This framework is based on counter-factual
reasoning (CF), in which we think of alternative worlds where if the cause is
removed, the effect does not occur. Essentially it is a simple but-for test, i.e.,
but for the existence of some event X, would Y have occurred. The naive CF
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reasoning fails to deal with many examples in the literature [19]. To reason
about causal relationships, HP uses a structural equations model (SEM). The
set of the equations is what HP refers to as a causal model. The utilization of
structural equations in this context allows for interventions. Intervention is the
act of changing a value in the model and checking the effects that it has on other
values. This concept is beneficial for inferring causality because it allows us to
answer the metaphysical counter-factual queries.

Causal Model A causal model [6] (Definition 2) uses variables to describe
the world. They take different values to present states of a property of the
world, and they have a causal influence on each other, which is modeled by
the equations [6]. Each equation represents a mechanism in the modeled world.
The variables are classified into exogenous and endogenous variables. Exogenous
variables are determined outside the model; they represent the factors that the
modeler does not consider as causes, but rather given. In contrast, the endoge-
nous variables represent the factors that we consider; their values are determined
by the exogenous variables and other endogenous variables within the model.

Definition 2. Causal Model [6] M is 4-tuple M = (U ,V,R,F), where

– U is a set of exogenous variables,
– V is a set of endogenous variables,
– R associates with every Y ∈ U ∪ V a set R(Y ) of possible values for Y ,
– F associates with X ∈ V FX : (×U∈UR(U))× (×Y ∈V\{X}R(Y ))→ R(X).

We restrict our focus now to acyclic models in which there is always a unique
solution to the equations given the values of the exogenous variables U . A given
set of values for the exogenous variables is called a context. A model is illustrated
using a graph with the variables from U ∪ V as nodes. There is an edge from a
node X to a node Y , if FY depends on X in the causal model.

Reasoning about Causality We start by presenting the formal notations
used by HP [6]. They are necessary for the definition of an actual cause which is
presented in Definition 3. A sequence of variables X1, . . . , Xn can be abbreviated

as a vector
−→
X , values of the variables are denoted by small letters x1, . . . , xn.

Analogously, X1 = x1, . . . , Xn = xn is abbreviated
−→
X = −→x . The values of all

exogenous variables U , also called (actual) context, is written as −→u . Variable Y
can be set to value y writing Y ← y, i.e., we substitute the equation of Y with

a constant. For a causal model M = (U ,V,R,F) and a vector
−→
X of variables

in V, a submodel M−→
X←−→x can be obtained by setting

−→
X to −→x in all functions F

and removing
−→
X from V in the model M. A primitive event, given a model M,

is a formula of the form X = x for X ∈ V and x ∈ R(X). A basic causal formula
is of the form [Y1 ← y1, . . . , Yk ← yk]ϕ, where ϕ is a Boolean combination of

primitive events. Y1, . . . , Yk (abbreviated
−→
Y ) are distinct variables in V, and

yi ∈ R(Yi), that are intervened on, i.e., their functions are substituted with
constants. A causal formula ψ can be evaluated in M given a context −→u . We
write (M,−→u ) |= ψ if ψ evaluates to true in the causal model M given context −→u .

The statement (M,−→u ) |= [
−→
Y ← −→y ](X = x) implies that solving the equations
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in the submodel M−→
Y ←−→y with context −→u yields the value x for variable X.

Definition 3 shows the three conditions of an actual cause.

Definition 3. Actual Cause ([6])
−→
X = −→x is an actual cause of ϕ in (M,−→u )

if the following three conditions hold:

AC1. (M,−→u ) |= (
−→
X = −→x ) and (M,−→u ) |= ϕ.

AC2. There is a set
−→
W of variables in V and a setting −→x ′ of the variables in−→

X such that if (M,−→u ) |=
−→
W = −→w , then (M,−→u ) |= [

−→
X ← −→x ′,

−→
W ← −→w ]¬ϕ.

AC3.
−→
X is minimal in satisfying the first two conditions.

AC1 sets a trivial condition:
−→
X = −→x can only be a cause of ϕ, if

−→
X = −→x and

ϕ are true under (M,−→u ). AC2 is the core of the definition. It checks the counter-

factual relation between the cause and the effect, i.e., changing the cause
−→
X = −→x

leads to ϕ changing to ¬ϕ. However, the definition allows us to keep variables−→
W at their actual value −→w . The tuple (

−→
W,−→w ,−→x ′) is called a witness of

−→
X = −→x

being a cause of ϕ. AC3 is a minimality condition and ensures that only essential
events are part of the cause. In the following, we briefly discuss the benefits of
HP specifically to attribute security attacks by re-using the knowledge from
AT. Although we are not adding extra knowledge to the models, we argue that
presenting the knowledge as a causal model is crucial for postmortem analysis.

Distinguishing between exogenous and endogenous variables, at first sight,
does not appear to be revolutionary. However, this distinction enables the choice
of what to count as a possible cause (endogenous) and what not to (exogenous),
hence, it treats cases of irrelevance. Consequently, it allows us to limit our
attribution based on the goal. If we are looking for legal evidence, then we can
include possible human actors in the set of endogenous variables. If we are looking
for an explanation of an intrusion, then we can include the running services as
endogenous variables. Furthermore, HP correctly classifies the non-occurrence
of events as causes. For example, an administrator “forgetting” to install the
latest update of the firmware on a server can be a cause of an exploit.

A typical problem of causality definitions, which HP deals with, is preemp-
tion. It resembles the confusing cases where several potential causes exist and
coincide, but one cause preempts the others. The problem for simple CF defi-
nitions is that if the earlier cause A, had not been there, cause B would have
triggered the effect anyway (just a bit later). Thus, A is not classified as a cause.

HP deals with this by using
−→
W from Definition 2 and auxiliary variables. Ac-

counting for preemption, in insiders attacks, is beneficial. Specifically, in attacks
with different strategies of attacking. For example, an administrator copying a
DB backup file, although this is a policy violation, is not the actual cause of the
data breach that happened. The copy act was preempted by a privilege abuse
of another employee. Further, differentiating actual causes in cases of preemp-
tion is crucial when preventive measures such as an intrusion detection system
IDS are deployed. For example, an IDS may preempt an attack from succeeding
although the basis steps of the attack were carried out.

Conjunction and Disjunction. HP can consider a combination of events
as a cause. There are attacks that are carried out by multiple steps, and hence
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are modeled using an AND gate. For example, to read a service’s memory, an
attacker accesses the machine, then attaches a debugger to the running process.
On the other hand, there are attacks that can be carried out using different tech-
niques or by exploiting different vulnerabilities. For example, to steal the master
key from a system, the attacker can either obtain it decrypted from memory
or encrypted from the database (the attacker then has to decrypt it). A more
interesting scenario would be if two insiders cooperated in performing an attack,
i.e., a collusion attack. Such attacks are a major threat class of insiders [14]. We
will see in Section 3 that our approach exploits this ability in HP.

2.3 Malicious insiders Example

We introduce a model of an insider behavior that leads to stealing a master
encryption-key in production. This is a simplified real-world example, inspired
by an industrial partner. It is simple enough to be explained, as well as strong
enough to show the usefulness of HP, especially with preemption. An excerpt
from the causal graph is shown in Figure 1. Basically, this model represents
one strategy to steal the key (MKS) by obtaining its encrypted version and de-
crypting it (as opposed to stealing it decrypted which is omitted for readability).

Amjad Ibrahim

S.Get(P)

S.DK

Master Key 

Stolen

S.Get(K)

B.Get(P)
B.DK

B.Get(K)

Figure 1: An excerpt of steal key model

The attack can be executed by one of two administrators (assuming no collu-
sion), Suzy (S) or Billy (B). The two are the suspects because they have sufficient
privileges in the system. However, S has more expertise in the system and the
technology. The event of S or B decrypting the key is denoted by the variables
S.DK,B.DK respectively. For that, each of them needs to read the pass-phrase
from a script (Get(P )) and read the key from the database (Get(k)). For now,
let us assume an arbitrary causal connection between S.DK and B.DK which
is meant to represent a preemption relation, i.e., a bias to represent S’s stronger
abilities. This relation is a dashed arrow because we think that such relations
can be dynamically altered by a modeler to express different concepts, e.g., S
has higher privileges, B has a better history in the company, S came earlier in
the morning the day that the incident was reported. The exogenous variables are
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omitted from the model; we have four exogenous variables that set the values for
Get(P )/Get(k) for both S andB, i.e., U is {S.Get(P )exo, S.Get(k)exo, B.Get(P )exo,
B.Get(k)exo}. The model is not sufficient for causality inference, we still need to
set the context (exogenous variables). This is done through logging, and auditing.

In a deterministic context, we can use the causal model to answer questions,
like Q1: is Suzy the cause of stealing the master key? or better Q2: what is the
actual cause of exposing the master key? Moreover, we can reason about the
actual cause in situations where we have two possible suspects. For example,
Q3: Is Billy’s decryption of the key or Suzy’s the actual cause of stealing it?
All of these questions cannot be answered using an attack tree only. Even if
we have attributed the attack tree with the potential suspects, we still cannot
infer actual causality directly in cases of preemption or missing events. The
equations follow, the dashed part of the equations shows the preemption relation.
- S.DK = S.Get(P ) ∧ S.Get(K)

- B.DK = B.Get(P ) ∧B.Get(K)∧ ¬S.DK
- MKS = S.DK ∨B.DK

Given the context (1, 1, 1, 1) when considering the ordering of the variables as
provided by the definition of U , let us answer Q2 by checking the conditions from
Definition 3. Specifically, we check if (S.Get(k)) a cause of (MKS), with W =
{B.DK}. Equation (1) shows the crucial steps (of checking AC2) to conclude
that S.Get(K) is the cause. With an empty set W , AC2 does not hold (case of
preemption), but with W={B.DK} (Step 3 Equation (1)), the effect does not
happen (Step 4) and hence S.Get(k) is a cause.

Step 1 S.Get(K) = 0 Intervening on x
Step 2 S.DK = 1 ∧ 0 = 0 Other variables state
Step 3 B.DK = 0 Cannot change this variable
Step 4 MKS = 0 ∨ 0 = 0 Effect is not happening

(1)

Other contexts are simpler to show causality inference had there been no preemp-
tion. Another interesting question would be is B.Get(K) a cause? The answer
is no. In the given context no matter how W is set MKS will still be True.

3 Attack trees to Causal models

Although attack trees are widely used to model attacks on a system, they are
not readily sufficient to attribute blame. Mainly because they normally do not
include the attacker, rather, they represent the attack strategies. That said,
they are a promising starting point to create causal models since they express
the dependencies among attacker acts, and they match the properties of a causal
model. First, ATs are already a propositional combination of events with (OR,
AND) relations. The ability to express ATs in boolean algebra makes it trivial to
express it as a causal model. Second, HP focuses on acyclic models; attack trees
are acyclic. We present our approach for extracting causal models from AT by
starting with a general methodology of causal modeling and then instantiating
it to the case of attack trees and insiders.
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3.1 A Methodology for Causal Modeling

Causality is model relative (see Section 2.2). Thus, the creation of a model is a
crucial step for causal analysis. One goal of this paper is to propose a domain-
specific causal modeling methodology that refers to the following activities.

1. Suspect Attribution: Representing each potential suspect in the model.
2. Variable Selection: Listing the different factors that are considered in the

model. They represent the causes, effects, and the environment. Each factor
is expressed as a variable in the model.

3. Semantics Expression: Representing how these variables affect each other
using propositional logic operators like and, or and negation.

4. Variable Classification: Classifying what can be considered as a cause (or
effect) (endogenous) and what not (exogenous). We will see later on that
this activity is lightly enforced in our methodology.

5. Variable Augmentation: Incorporating any useful knowledge about these
variables and their relations. Examples are preemption relations and the
independent probabilistic distribution.

Based on the above, we transfer the nodes of an AT into variables of a causal
model. In Section 3.2, we transform the original AT T to an attributed AT T ′.

3.2 Suspect Attribution

To bring it closer to causal models, we add suspects to AT. This idea is motivated
by our aim to bridge the gap between AT and causal models. As shown in this
section, the way that we add the suspects is crucial in determining the scope of
the causal queries that can be answered using the resulting model. We use the
tree shown in Figure 2 (corresponds to the example in Section 2.3) to illustrate
our approach. To the best of our knowledge, no prior work has tried to explore
approaches to restructure attack trees to include roles in an automated manner.
Instances of roles (e.g., data-center admin Suzy) are the potential attackers
(suspects) that have privileges to perform an insider attack. We refer to the
process of adding suspects to an attack tree as suspect attribution.

Suspect attribution is merely an unfolding (duplicating) task of parts of
the tree followed by allotting the new parts to one suspect. To create a new
path for each suspect, we keep the parent node of the gate as is. Then we
introduce an intermediate level of new nodes that correspond to insiders. The
allotment is represented by renaming the nodes to include the suspect identifier,
e.g., Billy.Read Pass Phrase. The challenging part of this process is determining
the location where we start unfolding.

Unfolding a tree can be done at different levels. However, depending on the
internal structure, this may produce trees that model different attack vectors.
Consequently, the range of the possible causal-queries that can be analyzed using
the resulting models depends on the unfolding level. For example, let us consider
attributing the left branch of the tree in Figure 2 with two instances of an admin
role, i.e., Billy and Suzy. We can do that at level two (root level is one). The
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Steal Master Key

Decrypt The Key

Get The Passphrase

From Script From Network

Get The Key

From File From DB

Steal Decrypted

From Key Management Service

Access Attach Debugger

Figure 2: Expose key attack tree

resulting tree is represented in Figure 3. This tree clearly models the possible
ways to steal the master key by either Billy or Suzy. The complete attack paths
in the tree allow expressing the behavior of one suspect performing an attack.

Decrypt The Key

S.Decrypt The Key

S.Get The Passphrase

S.From Script S.From Network

S.Get The Key

S.From File S.From DB

B.Decrypt The Key

B.Get The Passphrase

B.From Script B.From Network

B.Get The Key

B.From File B.From DB

Figure 3: L-2 Unfolding

Alternatively, we can attribute the suspects at the third level (L-3 ). Inter-
estingly, the resulting attack tree, as seen in Figure 4, models more possibilities
than the previous case. Especially, we now can model attack paths with a pos-
sibility of collusion between insiders [14]. As a result, attacks that involve both
Suzy and Billy cooperating to steal the master key are now covered in this tree,
and hence, causal-queries to blame them are possible on the resulting model.
Since collusion attacks are plausible among insiders [14], the second attribution
must be used, especially because it already includes the attacks (and queries)
that are covered by the higher level attribution (L-2). This comparison is an
instance of the specialization concept proposed by Horne et al. [8].

Actually, the attribution level is not the crucial factor in determining the
expressiveness of the attribution. Somewhat, it depends on the structure and
the semantics of the branch (first-level subgraph). Specifically, if we have an
AND gate in the branch, the expressiveness of the model will depend on the
attribution level. If we want to include the possibility of collusion attacks, then
the unfolding should happen at a level that is greater than the AND gate level.
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Decrypt The Key

Get The Passphrase

S.Get The Passphrase

S.From Script S.From Network

B.Get The Passphrase

B.From Script B.From Network

Get The Key

S.Get The Key

S.From File S.From DB

B.Get The Key

B.From File B.From DB

Figure 4: L-3 Unfolding

Although, unfolding after the last AND gate allows considering any possibil-
ity of colluding attacks, in some cases it may be unnecessary. For example, let us
consider the second branch in Figure 2. If we attribute suspects after the fourth
level, then we assume that the suspects may collude by having one accessing a
container and the other attaching a debugger. This is unlikely to happen. Still,
it produces a model that can be used for single-agent queries.

We propose to generate causal models from attributed AT based on differ-
ent attribution levels. The levels are determined for each branch based on its
structure. However, they can be overridden by a decision of the modeler.

Semantics of Attribution Let us start with AND Gates. An AND gate
is visualized in the left column of Table 1. The semantics of the node is given by
the formula associated with it, i.e., a = b ∧ c. We discussed how to unfold such
a gate, at the first level which does not account for collusion attacks (middle
column), or at the second level (right column).

The semantics of unfolding the (L1) with two suspects (denoted by ′ and ′′)
is shown in second row (steps 1−3) of Table 1. The last step shows a disjunctive
normal form (DNF) of the formula. Similarly, the right column shows the for-
mulas and simplification of unfolding at (L2). Comparing the forms shows that
the possible attack scenarios of (L1) unfolding are included in the (L2) unfold-
ing (this can be seen as a specialization [8] of attack trees). In other words, the
formula (L1) implies (L2), i.e., L1 =⇒ L2 is a tautology. Thus, causal queries
of the single blame can also be answered when unfolding on the second level.

Unfolding allows us to attribute possible suspects of an attack to the best of
the modelers’ knowledge. Simplifying the unfolded gates into their DNF proves
the preservation of the original gate semantics, i.e., a = b ∧ c. Essentially the
occurrence of the two concrete actions (b, c) combined causes an event (a). This
is expressed in each clause of the DNFs. Informally, a clause is one instance of
the original formula. We have to keep in mind, that this transformation is built
on the assumption that the list of suspects is the universe of all the possible
agents that can perform this attack. This assumption allows us to say that the
semantics of the transformed tree (or branch) is now refined to enumerate all
the possible scenarios, each presented as a clause that combines single or multi-
suspects. Lastly, the case of unfolding OR gates is similar and simpler because
the complication of the unfolding level is eliminated. Regardless of the level, an
original formula like a = b ∨ c, will be unfolded to a = b′ ∨ c′ ∨ b′′ ∨ c′′.
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Gate L− 1 L− 2

a

b c

a

a'

b' c'

a''

b'' c''

a

b

b' b''

c

c' c''

Semantics

1.a = a′ ∨ a′′

2.a′ = b′ ∧ c′

3.a′′ = b′′ ∧ c′′

4.a = (b′ ∧ c′) ∨ (b′′ ∧ c′′)

1.a = b ∧ c
2.b′ = b′ ∨ b′′

3.c = c′ ∨ c′′

4.a = (b′ ∨ b′′) ∧ (c′ ∨ c′′)
5.a = (b′ ∧ c′) ∨ (b′ ∧ c′′)
∨(b′′ ∧ c′) ∨ (b′′ ∧ c′′)

Table 1: Unfolding AND

3.3 Attributed Attack Tree Transformation

Since we are reusing the existing knowledge in the attributed attack trees, the
three activities: variable selection, semantics expression, and variable classifica-
tion are trivial. Basically, we consider each node as an endogenous variable that
defines whether or not an attack step has been conducted. Since the nodes are
connected with different operators, we use them to construct the equations and
therefore express the semantic relationships between the variables. Before we do
the transformation, we need to extend the tree, i.e., duplicate its leaves.

In attack trees, a leaf node represents an atomic step that is not further re-
fined [31]. When transferring leaves into endogenous variables of a causal model,
they lack corresponding formulas. Alternatively, we can consider them as exoge-
nous variables that represent the enviroment (context), but then they cannot be
regarded as potential causes in our reasoning. Thus, we extend the tree with a
duplicate set of leaves. In other words, each leaf on the tree gets an inbound edge
from a new node that has the same name with an exo suffix. Tree extension aids
us in classifying the variables, and it also maintains the possibility that any node
in the original tree can be considered as a cause. Definition 4 is a tree extension
function, where E(T ) copies the set of leaves of a tree T .

Definition 4. Extension Rule The relation T (N ,→,n0) ⇒ T ′′(N ′′,→′′,n0)
is defined by the following rule.

– N ′′ : N
⋃
rename(E(T ), exo); where rename( A, suffix) is a function that

renames nodes in set A to with a given suffix.
– →′′ : {→}

⋃
∀m∈E(T )(m→ m exo)

We should note that the same node can occur multiple times in AT. However, in
our causal model, exactly one instance of a variable exists. For the scope of this
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paper, we only allow node re-occurrence among leaves. So far, we discussed four
steps in our extraction process which are related to the AT. Now, we are ready
to create the model from the extended and attributed AT. We will illustrate that
by a formal mapping that depends on the definitions (Section 2).

Definition 5. Attack Tree To Causal Model
AT = (N ,→,n0, [[n]]) is mapped to a M = (U, V,R, F ) i.e. AT �M as follows

– U = E(AT ), where E(AT ) returns the leaf nodes of a tree AT
– V = N\E(AT ), where \ is the difference between two sets.
– R = {0, 1}.
– F associates with each X ∈ V a propositional formula FX = [[X]], which

corresponds to the semantical formula from the AT

3.4 Adding Preemption Relations

So far we discussed how to map the structure (variable and dependencies), the
semantics (formulas), and their causal importance (endogenous or exogenous).
Now we discuss variable augmentation. We augment the model with suspect-
related information that is useful to create preemption relations. Preemption
relations are a significant extension of the model. They represent relations be-
tween variables that express the same event conducted by a different suspect
(e.g., Billy.Get Key/Suzy.Get Key). They are decisive in models that have
potential identical causal relations [7] (see the example in Section 2.3). HP in-
troduces a treatment for such cases by relating them “somehow”. We adopt this
in the context of insiders by introducing a relation between the variables one
level after suspect attribution. The relation is based on what we call the suspi-
ciousness metric (SM). SM provides an order relation over the set of suspects
conducting a particular type of attack. In other words, it is a value given to each
potential attacker to aggregate their abilities in performing an event or willing-
ness to commit an attack. This can be related to a risk assessment of insiders.
For example, it represents the level of Suzy’s privileges in a system, Billy’s crim-
inal record, or a combination of these factors. The values of SM are used to
reflect the possible disparity among suspects, which can be global (a value of the
attacker ability for all possible attacks) or local (a value of attacker ability for a
specific attack). For simplicity, we limit ourselves to global SM.

Semantically, the preemption relation is represented by a not clause (¬X)
added to the less suspicious (i.e., smaller value) suspect about the higher sus-

picious suspect. For example, B.DK = B.Get(P ) ∧ B.Get(K)∧ ¬S.DK . The
dashed box represents a preemption relation.

3.5 Tool Support

Having introduced our approach, we now present our tool ATCM (Attack
Tree to Causal Model). ATCM is a command line tool that implements our
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approach.3 As the name suggests, ATCM takes an attack tree and suspects’
specification as an input and generates a causal model. Attack trees are usually
created using a broad variety of tools. In order to get access to the information
stored in such a AT, the latter needs to be exportable to a format that can
be easily accessed and used by us. Examples of tools fulfilling this requirement
are ADTool [15,5] which provides an XML-representation of the models created
with them. Consequently, we are able to use those as input for ATCM.

In general, ATCM incorporates a three-step approach: parsing, transforma-
tion, and extraction. First of all, we need to create a machine-readable object,
i.e., binary, representation out of a given XML-File that defines an attack tree
(Parsing). For this purpose, we have developed our own parsing components.
However, since this object representation is specifically tailored to each of the
supported file formats, we want to transform the latter into a uniform tree
representation, which comprises both attack and other similar models such as
fault trees, while ensuring that no semantic information is lost (Transforma-
tion). For this representation, we are using the Model Exchange Format (MEF)
(https://open-psa.github.io/mef/) in a slightly simplified form.

The advantage of abstracting the specific format such as ADT format is that
the most essential functionality of this tool, i.e., the extraction of the causal
model, needs to be developed only once. This reduces its error-proneness and
increases maintainability. Once an attack has been transferred into this uniform
representation, the described generation of the causal model can begin (Extrac-
tion). We export the results in a human-readable report and generate a causal
graph in the DOT format, which is a commonly used for describing graphs in a
textual format and can be rendered into a visualization by multiple tools.

4 Evaluation

In our evaluation, we analyze the following qualities: the efficiency of the model
extraction, the validity, and the effectiveness of the resulting models. For the
first, we discuss (in Section 4.1) the performance cost and the size expansion of
the tree in relation to different variables. In Section 4.2, we focus on the quality
of the model. Clearly, we do not aim to discuss the expressiveness of AT since
their refinement and granularity are decided by the modeler. However, we discuss
the validity of our models in relation to the input AT. Lastly, we discuss how to
use the causal model in a technical setting to infer causality.

We use four classes of use-cases in our experiments. Table 2 shows the partic-
ular attack trees of each class, along with the number of nodes in the tree. Each
class contains one or more trees that cover different sources as follows: 1) HP
examples: We use two famous examples from the causality domain [6]. This class
is mainly used for the discussion of the validity. 2) Insiders from industry: This
class includes a real-world attack tree which comes from an industrial partner.
It represents insider’s strategies to steal a master key from a deployment of an

3 ATCM is available at: https://github.com/amjadKhalifah/ATCM



14 Ibrahim et al.

Class Use Case Nodes # Potential Attackers

HP
HP1 3 2
HP2 2 2

Insider (Industry) Steal Master Key 12 {2, 8}

Insider (Literature)
BecomeRootUser1 8 {2, 8}
BecomeRootUser2 11 {2, 8}

Artificially Generated
Artificial1 255 {2, 8}
Artificial2 1017 {2, 8}
Artificial3 3057 {2, 8}

Table 2: Use Cases of our evaluation

enterprise solution. 3) Insiders from Literature: This class includes two attack
trees borrowed from [34]. They represent privilege escalation. The first uses win-
dows command line and scheduler, and the other uses Metasploit and Internet
Explorer. 4) Artificially generated trees: This class contains three trees that we
generated automatically. They do not hold any semantic value. The aim of using
them is to analyze the efficiency of extraction. In our experiments, we will vary
the number of attackers and test our model extraction for 2, and 8 suspects.

4.1 The Efficiency of the Extraction

Depending on the size, the structure of the AT, the attribution level l of each
branch, and the number of suspects s, the size of the resulting model will
vary. Since we are attributing branches at different levels, the size of the re-
sulting model is the sum of attributed branch-sizes plus one. This is expressed
as ((

∑n
i=1 |bli(s)|)+1), where n is the number of branches, and |bli|(s) is the size

(number of nodes) of branch i attributed at level l with s suspects. We express
the attributed branch size |bli|(s) as a function of suspects and its original size.

Definition 6. Attributed Branch Size |bli|(s)

|bli(s)| = (s · (|bi| − |bi|l>L>1 + |bi|Leafs) + |bi|l>L>1)

- |bi|, |bi|Leafs are the sizes of the original branch bi and the number of its leaves,
- |bi|l>L>1, |bi|l>L>1 are the size of the exclusive and inclusive subtree between
the branch root and attribution level. Inclusion refers to counting the root and
the leaves or excluding them.

We clearly see that our approach increases the number of nodes in the tree.
For future work, we plan to make use of the variance brought by manipulating
the factors that control the size. For example, filtering the model to include
tree branches, including less number of suspects, and testing models attributed
at different levels. Next, we evaluate the efficiency of the extraction process.
Table 3 shows the execution time exec(s) and the model size n of four AT
(their properties are shown as n: number of nodes, l: depth of the tree, and b:
number of branches). We have attributed the four trees with 2 and 8 suspects.
We attributed each tree at root-level, middle-level, and leaf-level. We created
benchmarks, based on Java Microbenchmark Harness to measure the execution
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2 Suspects 8 Suspects
Top Middle Leafs Top Middle Leafs

AT n l b n exec(s) n exec(s) n exec(s) n exec(s) n exec(s) n exec(s)

SMK 12 5 2 37 0.0002 36 0.0002 36 0.0003 139 0.0004 126 0.0004 108 0.0004

Be.Root1 8 4 1 24 0.0002 25 0.0002 23 0.0002 90 0.0004 91 0.0004 71 0.0004

Be.Root2 11 4 1 32 0.0002 35 0.0002 32 0.0003 122 0.0006 125 0.0006 98 0.0006

T1 255 8 2 767 0.0069 767 0.0117 767 0.0512 3059 0.0283 2879 0.0460 2303 0.1925

T2 1017 8 8 3065 0.0354 3065 0.1133 3065 0.7473 12233 0.1380 11513 0.4610 9209 2.99

T3 3057 8 16 6129 0.0939 6129 0.4084 6129 2.94 24465 0.3700 23025 1.65 18417 11.97

Table 3: Evaluation of the Efficiency

time. The benchmarks measure the time from parsing an AT until the creation of
the corresponding causal model. The values shown in Table 3 have been obtained
by running 10 warm-up and 20 measurement iterations on a Windows 10 machine
equipped with 8GB of RAM and a quad-core Intel® i7 processor.

For the small use cases (SMK, Be.Root1, and Be.Root2) the execution time is
small (below 0.7ms). The interesting part is with the artificial trees, where we see
a clear proportional increase of execution time with the deeper attribution levels.
This is due to our recursive algorithm. Model size, on the other hand, is of less
importance in that context, we can see that a 23025 node model took 1.7 sec to be
extracted (L-4), while a 9209 node model took 2.9 secs (L-8). Nevertheless, these
values do not exhibit a bottleneck. Hence, based on this empirical evaluation,
our approach should be efficient enough for any reasonable-sized AT.

4.2 The Validity of the Approach

There are no properties that discuss the validity of a causal model. Rather,
scientists have dealt with modeling by example. We use a similar approach. We
apply our approach to problematic examples in the literature [7] and compare the
results. Our goal is to check if we were able to automate the method of creating
models by splitting the general knowledge represented as trees from the suspects.
Although those examples are not security attacks, we model them as such.4 To
that end, we followed the following process. First, represent the abstract causal
knowledge as a tree (Table 4 middle column). Second, configure the actors in the
scenarios, e.g., Billy and Suzy. Third, generate the model (Table 4 right column).
Lastly, compare the generated model with the model presented in the papers.

For space limit, we only present two examples (Arsonists, Rock Throw-
ing). Arsonists (example 3.2 in [7]): Suppose that two arsonists drop lit matches
in different parts of dry forest, and both cause trees to start burning. Either
match by itself suffices to burn down the whole forest. HP describes the essen-
tial structure with 3 endogenous variables ML1 and ML2, where MLi = 0 if

4 Arsonists and Rock-Throwing are typical examples in the causality literature. We
may consider setting a forest on fire as an attack on the forest, with lighting matches
being a possible step of an attack. We may also consider shattering a bottle an attack
on the bottle, with throwing a stone being a possible step of an attack. The point here
is to show that our mechanism produces valid results also for well-known examples.
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Example HP Model Attack Tree Our Model

Arsonists

A1ML_exo

A1ML

A2ML_exo

A2ML

FB

FB

ML

A1ML

ML

A2ML

FB

A2ML_exo A1ML_exo

Rock-Throwing

BT_exo

BT

BS

ST_exo

ST

SH

BH

BS

H

T

BT_exo

BT

BS

H

ST_exo

ST

SH

BH

Table 4: Models From HP Examples

arsonist i does not drop the lit match and 1 otherwise, and similarly, a variable
FB for forest burns down. Rock Throwing (example 3.2 in [6]: “Suzy and Billy
both pick up rocks and throw them at a bottle denoted in the model as (ST and
BT ). Suzy’s rock gets there first, shattering the bottle denoted in the model as
(BS). Since both are perfectly accurate, Billy’s would have shattered the bottle
had it not been preempted by Suzy’s throw.” Table 4 shows that the models
vary a bit. This variation is negligible because it does not affect the semantics
from a causal perspective. Our model can be proved easily to be a conservative
extension ([7]) of the model from HP.

4.3 The Effectiveness of the Model

To evaluate the effectiveness of our models, we briefly show how they are used in
a production environment. We experimented with a technical setting of the ex-
ample from Section 2.3. First, we created the corresponding model using ATCM.
Second, we set the context for two concrete scenarios: Sce-1, in which Suzy stole
the key with the existence of preemption, and Sce-2, in which B illy did. Third,
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using the work in [11], we reason about the causality. We tested the models in
an environment that contains a set of micro-services and third-party software
that are deployed as docker containers. To set the context, we utilized moni-
toring tools namely, auditD to monitor file accesses, and Couchbase audit to
monitor queries. These tools generate logs that we used to set the exogenous
variables. For our initial prototype, the context was set manually. For example,
a sentence from auditD like ... ”MESSAGE” : ”PATH name=̈.../ script.txt
”..auid= 1001 uid= 1001.. is translated into S.From Script exo= 1 (Suzy’s
id=1001). U = {S Scriptexo, S DBexo, S F ileexo, S NWexo, ..Billy’s variables}.
Accordingly, we have two contexts, namely Sce-1 {1, 1, 1, 1, 1, 1, 1, 1} and Sce-2
{0, 0, 0, 0, 1, 1, 1, 1} when we consider the ordering of the variables.

Due to a recent tool (HP2SAT) that aimed for an efficient computation of
actual causality [11], we analyzed the two contexts using the steal master key
8-suspects model with 91 endogenous and 48 exogenous variables. We used the
two questions from Section 2.3: Q1: is Suzy the cause of stealing the key?, Q2:
Is Billy’s decryption of the key or Suzy’s the actual cause of stealing it?.

Sce-1 represented the situation of having multiple tentative suspects. The
results matched our ground truth, i.e., Suzy was concluded to be responsible
for the incident. Although this may seem intuitive, it was only enabled by the
fact that we made our knowledge explicit using a causal model. The analysis
of Q1 took 3.07ms and consumed 3.2MB of memory. For Sce-2, it was easier
to conclude that Billy is the reason for stealing the key since the context was
clearer (Suzy and other suspects did not log into the system). The analysis of
the model for Q2 took 2.78ms and consumed 3.2MB of memory.

5 Related Work

Security. To the best of our knowledge, no previous work has tried to generate
HP models for malicious insiders. However, the thorough work on attack and de-
fense modeling is interesting. Kordy et al. [16] surveyed the DAG-based models.
Their main classification of the models is either tree or Bayesian network (BN)
based. Although a BN is similar to a causal model, there are two differences in
utilizing them in security. First, BNs are used for the probabilistic inference of
an attack likelihood and prediction. However, we aim to use the causal models
for inferring actual causality. Second, a causal model contains a semantic per-
spective represented by the SEM, while BN only contains a dependency relation
supported by conditional probability table. In this direction, we see the work by
Qin et al. [25] which indeed converts attack trees to BN to correlate alerts to
predict attacks. Similarly, Althebyan and Panda [1] present a BN model to eval-
uate and analyze a system after an insider attack. Their evaluation and analysis
do not include attributing the attacker. Poolsapassit and Ray [24,26] use AT in
a similar way. They do not convert it to other models but rather combine it with
insider’s intent to predict malicious activity. In [24] they use AT to investigate
logs. These two papers are related to our goal but different in the approach of
converting AT to causal models annotated with possible suspects. Most of the
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work reporting on insiders [30,23] aims to detect the attacks at run-time [14].
Although our work can be combined with such approaches, this is fundamentally
different since we consider postmortem attribution. Chinchani et al. [4] proposed
a modeling language for insiders. This is interesting, however, we used AT for
reasons of industry utilization and tool support [15].

For attack attribution, researchers [32,9] have identified three techniques:
digital forensics, Malware based analysis, and indirect attribution techniques
that use statistical models to identify attackers. Most of these techniques target
outsider attackers. Unlike our approach, digital forensics tools mainly face the
challenge of scalability with the size of logs [32], whereas we can elicit require-
ments of logging from our modes. That is, we only monitor the properties that
set our context. Malware based analysis targets a different attack vector than us.
Indirect attribution techniques are interesting since they use a statistical model.
However, they require massive amounts of data. In contrast, we make use of
explicit knowledge represented in attack trees.

Causality is a cross-domain concept. An overview of different fields of causal-
ity applications is presented by Halpern in [7]. An example of research based on
the HP definition is the work by Kuntz et al. [18], who are using counterexample
traces of model checking tools to construct fault trees. This is similar to our tar-
get in general but different in two key aspects. First, it does not leverage security
threat models to construct causal models that are used to infer causality in the
postmortem. Second, our approach is to model only unwanted behavior while
they utilize behavioral models of the systems. Similar to our approach, Ibrahim
et al. [10] created holistic causal models for Cyber-Physical Systems from differ-
ent source models. Their approach focused on combining those models without
focusing on one attack vector like insiders. Pearl examines causal modeling in
[22]. Further literature examining model discovery is listed in a paper by Chen
and Pearl [3]. These approaches are data-driven methods that differ from our
approach of creating causal models from other models.

6 Conclusions and Future work

To handle the insider threat, we proposed enabling accountability through sup-
porting causal reasoning. To that end, we presented a methodology that intro-
duces HP causal models into the security domain. We showed that such models
are beneficial in the context of insiders and we considered AT as a source for
creating them. However, we identified suspect attribution as a crucial step in the
conversion. Thus, we introduced a method to add suspects to AT considering the
possibility of them colluding. Also, we focused on creating models that include
preemption relations. This work can then be combined with causality reasoners
to enable forensics analysis of insider accidents. Although it is hard to evaluate
models reasonably, we showed that our approach is efficient to extract valid and
useful models. Next, we plan to automate the step of context setting which is
concerned with the logging capabilities.
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