
A probabilistic attack simulation language for
the IT domain ?

Sotirios Katsikeas1[0000−0001−8287−3160], Simon Hacks1[0000−0003−0478−9347],
Pontus Johnson1[0000−0002−3293−1681], Mathias Ekstedt1[0000−0003−3922−9606],

Robert Lagerström1[0000−0003−3089−3885],
Joar Jacobsson2, Max Wällstedt2, and Per Eliasson2

1 Division of Network and Systems Engineering,
KTH Royal Institute of Technology, Stockholm, Sweden
{sotkat|shacks|pontusj|mekstedt|robertl}@kth.se

https://www.kth.se/nse
2 foreseeti AB, Stockholm, Sweden

{joar.jacobsson|max.wallstedt|per.eliasson}@foreseeti.com
http://www.foreseeti.com

Abstract. Cyber-attacks on IT infrastructures can have disastrous con-
sequences for individuals, regions, as well as whole nations. In order to
respond to these threats, the cyber security assessment of IT infrastruc-
tures can foster a higher degree of safety and resilience against cyber-
attacks. Therefore, the use of attack simulations based on system ar-
chitecture models is proposed. To reduce the effort of creating new at-
tack graphs for each system under assessment, domain-specific languages
(DSLs) can be employed. DSLs codify the common attack logics of the
considered domain.

Previously, MAL (the Meta Attack Language) was proposed, which serves
as a framework to develop DSLs and generate attack graphs for mod-
eled infrastructures. In this article, we propose coreLang as a MAL-based
DSL for modeling IT infrastructures and analyzing weaknesses related to
known attacks. To model domain-specific attributes, we studied existing
cyber-attacks to develop a comprehensive language, which was iteratively
verified through a series of brainstorming sessions with domain modelers.
Finally, this first version of the language was validated against known
cyber-attack scenarios.

Keywords: Meta Attack Language · Threat Modeling · Attack Simu-
lation · Attack Graphs · Domain Specific Language · IT Infrastructure.

? This work has received funding from the Swedish Civil Contingencies Agency
through the research centre Resilient Information and Control Systems (RICS), Eu-
ropean Union’s H2020 research and innovation programme under the Grant Agree-
ments no. 833481 and no. 832907, the Swedish Energy Agency, and the Swedish
Governmental Agency for Innovation Systems (Vinnova).

2 S. Katsikeas et al.

1 Introduction

Today, our society is heavily dependent on IT infrastructures. Another fact is
that cyber-attacks on IT infrastructures can have disastrous consequences for
individuals, regions, and whole nations. One example are the recent deliber-
ate disruptions of electrical power and energy systems [3, 20], which resulted in
real-world catastrophic physical damage, like major power outage or city-wide
disruptions of any service that requires electric power. But also, attacks on au-
tomated vehicles [21] and internet of things enabled attacks [25, 22] are good
examples of IT related cyber-attacks.

It is therefore necessary to keep such critical IT infrastructures secure. In
order to respond to these threats, the assessment of IT infrastructure’s cyber
security can foster a higher degree of safety and resilience against cyber-attacks.

However, such an assessment is difficult. In order to identify vulnerabilities,
the security-relevant parts of the system must be understood and all potential
attacks have to be identified [17]. There are three challenges related to these
needs: First, it is challenging to identify all relevant security properties of a
system. Second, it might be difficult to collect this information. Last, the col-
lected information needs to be processed to uncover all weaknesses that can be
exploited by an attacker.

Attack graphs have been previously proposed as a method to assess security
on larger system architectures. This approach is gaining in popularity, both in
academia and in industry the last years.

Hitherto, we have proposed the use of attack graph simulations based on sys-
tem architecture models (e.g., [4, 9]) to support these challenging tasks. Our ap-
proaches facilitate the modeling of systems and simulating cyber-attacks against
them, in order to identify the greatest weaknesses. This can be imagined as the
execution of a great number of parallel virtual penetration tests. Such an attack
simulation tool enables the security assessor to focus on the collection of the
information about the system required for the simulations, since the simulation
tackles the first and third challenges.

As the previous approaches rely on a static implementation, we propose
the use of MAL (the Meta Attack Language) [11]. This framework for domain-
specific languages (DSLs) is used to define which information about a system is
required and specifies the generic attack logic. Then, MAL automatically gener-
ates attack graphs corresponding to security simulations involving the modeled
system. Since MAL is a meta language (i.e. the set of rules that should be used
to create a new DSL), no particular domain of interest is represented.

Using MAL threat/attack DSLs for many kinds of domains can be defined,
as for example industrial control systems, vehicles, IoT, etc. The goal of using
DSLs is to make the DSLs as detailed and domain specific as possible in order to
be able to get precise results, valid for the specific domains. More specifically, the
goal is to capture the specifics of the domains, attack vectors, design strengths
and weaknesses. However, these domains also share a lot of common properties
and designs. Example of commonalities are that software is executed among all
of these domains, execution stacks like virtual machines or operating systems

A probabilistic attack simulation language for the IT domain 3

(OS) are used, software communicates over networks, there are accounts with
privileges and many more. Therefore, we can conclude that even if we want to
capture specifics, in the end, it would be a redundant waste of effort to capture
the same fundamental information more than once for all the different DSLs.

We therefore propose to design a core DSL that will cover the basic and
common structure of software systems and IT infrastructure. Our goal with this
work is to capture the basic architecture for future DSLs. Therefore, this work
aims to create and evaluate a MAL-based DSL, named coreLang, that would
have a high level of abstraction and will, therefore, be suitable for modeling
generic IT infrastructures. Ideally, the aim for corelang is to cover the basics
for all possible domains. Then, due to this higher level of abstraction, coreLang
could be extended to create other MAL-based DSLs. This is a large task and our
current ambition is to get the fundamentals correct for some basic domains (such
as normal enterprise IT and control systems). In this paper, the first release of
coreLang will be presented.

Following, we will present related work before a brief introduction to MAL,
the framework that we mainly use in this work, this is done in Section 3. Next,
we detail the facilitated research method in Section 4. Then, in Section 5 the
language that was developed is presented in detail. To give a better understand-
ing of the capabilities of the language, we created an example model of the IT
infrastructure part of the Ukrainian cyber-attack scenario, which is presented
in Section 6. Finally, the validation and discussion about this work is done in
Section 7, which is followed by the conclusion.

2 Related Work

This work is related to three domains of previous work: attack/defense graphs,
model-driven security engineering, and information technology (IT) security.

First, as already mentioned, attack/defense graphs are widely applied as a
formalism for security analysis. Second, there are DSLs for the security analysis
of software and system models defined in the domain of model-driven security
engineering. Finally, due to the fact that coreLang is designed to be applied in
the domain of IT security, the results of existing IT attack studies are utilized
for the evaluation of the language.

The concept of attack trees is based on the works by Bruce Schneier [23, 24].
Attack trees were formalized by Mauw & Oostdijk [16] and extended to include
defenses by Kordy et al. [13]. As summarized in [14], there are several approaches
to elaborating on attack graphs (e.g., [10, 26]). Based on the theoretical achieve-
ments of previously presented papers, various tools using attack graphs have
been developed. These tools largely operate by collecting information regard-
ing existing systems or infrastructures and automatically creating attack graphs
based on this information. For example, the topological vulnerability analysis
(TVA) tool [18] models security conditions in networks and uses a database of
exploits as transitions between security conditions.

4 S. Katsikeas et al.

A sub-domain of attack graph modeling, that is of more interest to us, focuses
on probabilistic attack graphs (e.g., facilitating Bayesian networks). In [6], the
authors applied the TVA tool to generate attack graphs, transform generated
graphs into dynamic Bayesian networks, and enrich the Bayesian networks us-
ing probabilities based on common vulnerability scoring system (CVSS) scores.
The CVSS was also utilized by [28] to model uncertainties in attack structures,
attacker actions, and alert triggering.

Several DSLs have been built in MAL serving as good examples of the ca-
pabilities a MAL-based DSL has and how it can be developed. These languages
provide the capability to model a system’s design based on its components and
their interactions. Furthermore, such languages also facilitate the modeling of
security properties such as constraints, requirements, or threats. One example
of a MAL-based DSL is vehicleLang [12], which is a DSL for modeling cyber-
attacks on modern vehicles. Another example is a simplistic core language, that
only contains the most common IT entities and attack steps and is included in
the presentation of MAL [11]. Finally, another MAL-based DSL that will soon
be published but some parts of it were used as inspirational blueprints for devel-
oping coreLang, is awsLang, which is a DSL for modeling Amazon Web Services
environments [5].

Apart from the languages mentioned before, there exist some security lan-
guages which do not support automated analysis purposes [15, 2]. They offer
only the capability to model security relevant properties. An analysis needs to
be conducted manually without any further support.

Approaches using attack graphs and system modeling have been united in
some previous works (e.g., P2CySeMoL [9], and securiCAD [4]). The core concept
of these methods is to generate probabilistic attack graphs automatically from a
given system specification. Attack graphs serve as inference engines to produce
predictive security analysis results from system models.

MAL, that will be briefly presented in the next section, is a modeling and
simulation framework based on graphical models. It combines attack graphs with
conceptual graphical software system modeling techniques.

3 MAL

For a detailed overview of the MAL, we refer readers to our original paper, which
focuses on core grammar, syntax, formalism, and additional details regarding
the MAL [11]. However, for completeness, a short presentation of the MAL is
provided below.

First, a DSL created with MAL contains the main elements that are found
on the domain under study. Those are called assets in MAL. The assets contain
attack steps, which represent the actual attacks/threats that can happen on
them.

An attack step can be connected with one or more following attack steps
to create an attack path. Those are used to create attack graphs which are
facilitated when the simulation is run. Attack steps can be either of the type OR

A probabilistic attack simulation language for the IT domain 5

or the type AND, indicating that performing any individual parental attack step
is required (OR) or performing all parental attack steps is required (AND) for
the current step to be performed. Additionally, each attack step can be associated
with specific types of risks. The risks can be any combination of confidentiality
(C), integrity (I), and availability (A) and are specified in brackets after the
attack step name. Furthermore, defenses are entities that do not allow connected
attack steps to be performed if they have the value TRUE. Finally, probability
distributions can be assigned to the attack steps in order to represent the effort
needed to complete the related attack step.

Assets also have associations between each other that describe the relations
between them. Inheritance between assets is also possible and each child asset
inherits all the attack steps of the parent asset. Additionally, the assets can be
organized into categories.

Next, a short example of how a MAL-based DSL looks like follows. On this
example, four modeled assets can be seen together with the connections of attack
steps from one asset to another. For example, if an attacker performs phish on
the User, it is possible then to reach obtain on the associated Password and as
a result finally perform authenticate on the associated Host. In the last lines of
the example the associations between the assets are defined.

category System {

asset Network {

| access

-> hosts.connect

}

asset Host {

| connect

-> access

| authenticate

-> access

| guessPassword

-> guessedPassword

| guessedPassword [Exponential(0.02)]

-> authenticate

& access {C,I,A}

}

asset User {

| attemptPhishing

-> phish

| phish [Exponential(0.1)]

-> passwords.obtain

}

asset Password {

6 S. Katsikeas et al.

| obtain {C}

-> host.authenticate

}

}

associations {

Network [networks]

* <-- NetworkAccess --> *

[hosts] Host

Host [host]

1 <-- Credentials --> *

[passwords] Password

User [user]

1 <-- Credentials --> *

[passwords] Password

}

4 Method

Design Science Research (DSR) is a widely applied and accepted means of devel-
oping artifacts in information systems research. It offers a systematic structure
for developing artifacts, such as constructs, models, methods, or instances [8].
The application of DSR is appropriate since research objectives are guiding the
development of artifacts. We adopted the approach presented by Peffers et al.
[19], which is split into six individual steps and two potential feedback loops, as
described below.

1 Identify Problem & Motivate: In the introduction section of this pa-
per the importance of cyber security assessment of IT infrastructure’s was
highlighted. Additionally, MAL is already proposed as a tool to provide an
environment for security assessors including already known attacks on as-
sets. Therefore, the problem that we try to solve is to devise a tool, in our
case a DSL, that will be able to model the common elements found in almost
all IT infrastructures using MAL.

2 Define Objectives: To identify vulnerabilities, the security-related ele-
ments of an IT infrastructure must be understood and all potential attack
types must be identified. There are three main challenges related to these
goals. First, it is difficult to collect specific information regarding all potential
attacks on each security-related element. Second, collected information must
be processed and modeled in a language in a manner that accurately models
potential attacks and their outcomes. Finally, a key objective of this work,
and a challenge to overcome, is to find the appropriate level of modeling
abstraction so that the developed language could be reused as a foundation
for other future MAL-based DSLs.

3 Design & Development: To design artifacts, we based our attack lan-
guage on MAL [11]. To model domain specific properties in our language,

A probabilistic attack simulation language for the IT domain 7

we relied on brainstorming sessions with people from foreseeti AB which can
be considered as domain experts, since they are in close contact with IT ar-
chitects and security officers of many different industries and they provided
us with lessons learned from over five years of development and usage of
the securiCAD tool which contains an attack graph generating DSL. During
those sessions, we presented our perception of the corresponding topic under
study and they provided comments back to us. The comments we got were
used as an early indication if we are moving towards the right direction.
These workshops were conducted for two hours on a weekly basis for five
months.

4&5 Demonstration & Evaluation: To demonstrate our approach, we created
a set of use case models. First, we model typical IT attacks that are well
known and relevant to the part of the language that was under active de-
velopment at that time. Thus, for every new part that was developed in the
language, demonstrating use case models were created. Second, we created
a model of the IT infrastructure part of the Ukrainian cyber-attack scenario
[3].
The evaluation of the use case models created was done through evaluation
sessions with the same domain experts. The results of the simulations on the
created models were discussed with domain experts and relevant feedback
was given back to us. If the feedback suggested that improvements or changes
are needed in the language to better reflect the reality, an iteration of the
step 3 was done.
Finally, we also see the presented, on this paper, version of the coreLang as
the result of a the first development iteration.

6 Communication: This paper is the first official communication of coreLang.
Our research is communicated by the publication of the paper itself and
presentation at the conference.
coreLang is an open-source project, and the code behind the language is
publicly available on our GitHub repository3.

5 CoreLang

Six different main asset categories have been included in coreLang (see Figure
1): system, vulnerability, user, identity and access management (IAM), data
resources, and networking. In this section, those categories and the related design
decisions will be explained in detail.

5.1 System

The first category System is the collection of assets that usually represent the
computing instances in an environment, and thus are the natural attack surface.

First, an asset called Object was created (inspired by the Java object) that
provides common functionality to all inheriting assets. Basically, an Object is

3 https://github.com/mal-lang/coreLang/tree/stable

8 S. Katsikeas et al.

Fig. 1. Overview of assets and their associations in coreLang

the simplest form of an asset that can have a Vulnerability. Then, Object is
specialized into two child assets, System and Application.

The System asset specifies the hardware on which Applications can run.
After achieving physical access, the attacker can try to authenticate on it and/or
perform a denial of sevice attack on all the Applications that are executed on
it. Except physical access, two more levels of access are modeled on a System.
The first one is the specific access, which models the ability to locally connect
to the hosted applications after authenticating. Then, there is also the full ac-
cess, which is gained after a “high-privilege” Identity authenticates itself or is
compromised.

On the other hand, the Application asset specifies everything that is exe-
cuted or can execute other applications. For that reason, the Application asset
is more complex and includes a wider range of attack steps. With the same way
that is modeled for the System asset, in order to get access on an Application

two previous attack steps need to be compromised, the first one is some kind of
connect and second a successful authentication. There are three possible ways
of “connecting” to an Application: i) either via local connect, which occurs
because any identity with “low-privilege” access on the executing instance is
assumed to be able to locally (i.e., on the same host application, using loop-
back) interact with the executed applications, ii) via network connect, which
can happen when an application is exposed on a network, or iii) via identity
local interaction which happens when the associated “low-privilege” Identity

is compromised or authenticates itself. More details about the Identities will

A probabilistic attack simulation language for the IT domain 9

be provided in the corresponding subsection 5.4. It is worth noting that some
attack steps (e.g. codeExecution) were adopted from awsLang [5].

To clarify the definition of the Application asset, the relevant MAL code
snippet is presented below. Additionally, how the attack steps of the Application
asset are connected with the attack steps of other assets, with which Application

has associations with, is represented on the MAL generated graph in Figure 2.

asset Application extends Object

{

| localConnect

-> localAccess,

connectLocalInteraction,

attemptUseVulnerability

& localInteraction

-> appExecutedApps.localConnect,

attemptUseVulnerability

| attemptUseVulnerability

-> vulnerabilities.attemptAbuse

| networkConnect

-> networkAccess,

connectLocalInteraction,

attemptUseVulnerability

| accessNetworkAndConnections

-> networks.access,

appConnections.applications.networkConnect,

appConnections.transmit,

appConnections.transmitResponse

| authenticate

-> localAccess,

networkAccess

| access {C,I,A}

-> read,

modify,

deny,

appExecutedApps.access,

containedData.attemptAccess,

accessNetworkAndConnections,

hostApp.localConnect

| codeExecution

10 S. Katsikeas et al.

-> access,

executionPrivIds.assume,

modify

| read {C}

-> containedData.attemptRead

| modify {I}

-> containedData.attemptAccess

| deny {A}

-> containedData.attemptDelete

...

}

Fig. 2. Graph representing the attack steps, and their connections, of the Application
asset in coreLang

Lastly, this category contains PhysicalZone, which is the location where
Systems are physically deployed. If physical access is performed on a PhysicalZone,
then the attacker is able to connect and get physical access on the Systems that
are part of the PhysicalZone.

A probabilistic attack simulation language for the IT domain 11

5.2 Vulnerability

The basic idea of creating a MAL-based language is to provide a set of already
known attack steps to the modeler. However, this incorporates two types of
shortcomings. First, we concentrate on known attack steps. But, there are also
attack steps that are not known yet. Second, the level of abstraction selected for
coreLang is another shortcoming. Because of that, we cannot provide all possible
attack steps upfront, as the attack steps are very diverse for different assets.

To overcome these issues, we provide a set of Vulnerabilities and Exploits.
On the one hand, these assets can be used as a foundation for other lan-
guage developers. On the other hand, we provide a standard and abstract set
of Vulnerability and Exploit that represent three discrete levels of impor-
tance. These can be used by the end-user to model attack steps that are not
known at the time of creating the language. Basically, any Object can have a
Vulnerability that leads to different levels of impact to the vulnerable Object.
This Vulnerability can then be facilitated by an Exploit that can have dif-
ferent levels of complexity, for example a Low Complexity Exploit can be ex-
ploited in order to abuse a High Impact Vulnerability.

5.3 User

This category contains the representation of a User. The User serves as attack
surface for social engineering attacks. The most apparent attack that is modeled
in this asset is the phishing attack of the User, which can lead to either creden-
tial theft or takeover of the user’s computer. The latter one allows a malicious
backdoor connection to be opened to the user’s computer, which the attacker can
then use to further compromise the same machine or perform lateral movement.

5.4 IAM

Identity and access management (IAM) is an accepted concept to manage dif-
ferent identities representing users and their access to certain applications [27].
Therefore, the IAM category in coreLang is comprised of the Identity asset
that represents a user group, and the Credentials asset that can be associated
with one or more Identities. After legitimate authentication or an illegitimate
compromise of an Identity, the attacker assumes its privileges. Thus, both le-
gitimate and illegitimate access is represented. As already mentioned, access to
an Identity is usually secured by means of Credentials. Those Credentials

can be stolen/guessed by the attacker directly (e.g., due to brute-force) or the
User can be convinced to enter them by themselves (e.g., due to social engineer-
ing, like phishing, as mentioned previously).

Identities are, however, not only associated with Credentials but also
with Users and Objects, like Systems and Applications, as seen in Figure 1.
An Identity associated with a User models the usage of that Identity by a
User or by an Application running under the identity’s privileges. Additionally,

12 S. Katsikeas et al.

an Identity that is associated with a System or an Application represents the
privileges that the Identity has over it.

When it comes to IAM on a System, two different levels of Identity-System
associations are modeled. First there is the Low Privilege Access which provides
individual level access on a System from an Identity. Second, there is the High
Privilege Access, which is equal to gaining access on the System as every possible
associated Identity. The reason for these two levels of privileges is caused by
the common separation between simple and admin users was done.

On the Application side, there are three different levels of Identity-Application
associations modeled. First, there is the Low Privilege Application Access, which
only provides local interaction with the Application. But, this simple inter-
action is the only prerequisite for many Vulnerabilities and, therefore, can
result in severe compromise of the whole infrastructure [29]. Second, there is the
Execution Privilege Access, which represents the fact that every Application is
executed with the privileges of an Identity. In this case, if the Application

is compromised, then the privileges of the associated Identity should also be
compromised. Finally, there is the High Privilege Application Access, which mod-
els the higher level of privileges over an Application and if such privileges get
compromised, all the child/executed applications should also be compromised.

5.5 Data Resources

This category groups the assets that are usually communicated. First, the Information
asset is defined as a conceptually abstract concept that is then incorporated in
the Data asset. The Data asset represents any form of data that can be stored
or transmitted. This asset was heavily based on the homonymous asset found
on awsLang [5]. An attacker can perform the classical actions of read, write, and
delete, which all are modeled as attack steps. Those attack steps can be reached
either by compromising the Identity that is associated with the Data or by com-
promising the asset that contains those Data, as for example the Connection or
the Application asset.

5.6 Networking

The last category is concerned with networking related assets. First, the Network
asset is defined. An attacker that has physical access to a Network can perform
a denial of service attack by physically destroying the network medium. But if
the attacker has network access, it is able to network connect and perform denial
of service to all the network exposed Applications as well as attempt network
forwarding to other neighbouring Networks.

The border of every Network is defined by a RoutingFirewall, which spec-
ifies a border router with firewall capabilities that can interconnect many net-
works. The RoutingFirewall is modeled as a System and is therefore subject
to possible Vulnerabilities. A Vulnerability can lead to full access which
results in bypassing of all the network rules defined by the firewall.

A probabilistic attack simulation language for the IT domain 13

Lastly, there is the Connection asset, which specifies the existence of a con-
nection between Applications or Networks and could consequently be used for
lateral movement by an attacker. Each Connection that is associated with the
RoutingFirewall represents a connection rule meaning that the firewall allows
the forwarding of the associated traffic. If a Connection is not associated with
the RoutingFirewall, then the corresponding traffic is prohibited.

While Applications can be associated with connections in a single way,
Networks have three different types of associations with a Connection in regard
to the three possible rules that can be found on a firewall. Those are, first
the simple Network Connection, which models a bidirectional connection rule,
second the Out Network Connection, which models a uni-directional connection
rule that solely allows outgoing traffic of this Network, and third the In Network
Connection which models the uni-directional connection rule that allows only
incoming traffic into that Network.

6 Example Model

As already mentioned, coreLang aims to provide a high level of abstraction in the
models created. For that reason, it is suitable for modeling a wide variety of IT
infrastructures with a high level of abstraction. To demonstrate the application
of coreLang, we use it to model a simplified version of the Ukrainian cyber-attack
scenario and the way we interpreted it from an analysis that was published on
it [3], that described how the attackers got a foothold on the internal networks.

The model was created in securiCAD [4], which is a software tool developed
by foreseeti AB for performing virtual attack simulations on models of IT archi-
tectures, and which also allows to create MAL-based models. In Figure 3, the
created model is presented.

The attack description below is based on the simulation results which are in
accordance to what the analysis reports from that specific cyber-attack state [3].

The simulated attack scenario, which is presented on the generated attack
graph in Figure 4, is the following. First, the attacker performs a social engi-
neering attack towards the User by sending a malicious payload file attached
on a Microsoft Office Word document sent via email. Then, the User opens
the document and executes the payload. Due to a Vulnerability on the Office
Word Application, the malicious payload is executed and the vulnerability is
exploited allowing the attacker to successfully execute code and take control of
the user’s Office Word application. The attacker has assumed the privileges of
the Identity associated with the Office Word application and, therefore, has ac-
cess on the Application. That, in turn, allows a local connect to the Windows
operating system, which is an Application. Unluckily enough, the operating
system is also vulnerable and the attacker can attempt exploit this also to gain
access on it. Next, due to poor security policy enforcement, the Credentials for
another workstation located in the same office Network is stored in the operating
system in a text file and is accessible by the attacker. The attacker can also access
the office Network and network connect to the second workstation. By having

14 S. Katsikeas et al.

Fig. 3. coreLang model in securiCAD of the IT infrastructure of the Ukrainian cyber-
attack example model

A probabilistic attack simulation language for the IT domain 15

Fig. 4. coreLang generated attack graph for the Ukrainian cyber-attack example model

the Credentials that attacker is also able to authenticate and gain access on
this workstation. Gaining access on this workstation is proven to be resourceful
since a VPN client Application is executed on that operating system. Again,
the attacker was lucky, since the VPN Credentials are stored as file on that
workstation. By accessing them, is then able to network connect on the VPN
server on the DMZ Network and then use the Connection to human-machine
interface (HMI) in order to send control commands on the HMI controlling the
power grid.

7 Validation & Discussion

According to Hevner et al. [8], five methods can be used to evaluate the output
of DSR: observations, analysis, experiments, tests, and descriptions. Because
developing coreLang was similar to developing source code, tests were selected
as an evaluation method. This decision was made based on the fact that testing
is widely used in application development and commonly accepted as a means
for ensuring that an application behaves as intended.

In our work, the tests were implemented as use case tests [7]. More specifically,
as the development of the language proceeded through different asset categories,
some real-world use cases that describe a variety of common IT attacks, that
should be supported by the language, were provided to us by our collaborators
and domain experts from foreseeti AB. Then, models for those test use cases
were created and simulations were ran. The results of those simulations were
then discussed with the same domain experts in evaluation sessions and feed-
back was provided back to us. If the feedback suggested that improvements or
changes are needed in the language to better reflect the reality, an iteration of
the development phase for this asset category and evaluation session was done.

16 S. Katsikeas et al.

By using use cases for validation, we ensure that the generated language
fulfills the requirements of having a high level of abstraction while it retains its
correctness. Additionally, the language still covers real-world scenarios that are
typically requested from the IT infrastructure modelers that will eventually be
the users of this language.

Through the evaluation sessions we had, the goal was to use the experiences of
our collaborators in order to improve coreLang. Those experiences were related
to parts of the models that were previously cumbersome to model using the
existing tools and MAL languages, and also experiences about cases that were
not at all modelable previously. Some examples of such incomplete modeling
cases are IAM and networking.

One problem that occurred during development was caused by the higher
level of abstraction that we wanted to retain in the language. Some common IT
elements, interactions or relations could not be explicitly modeled. Our solution
to this problem was to make assumptions in the design of the language that allow
the more specific cases to be modeled with a higher level of abstraction. These
assumptions are documented in the language itself. One characteristic example
is that on coreLang, there is no asset specifying an operating system nor a guest
operating system, both cases can be modeled by having two application assets
associated with each other in a hierarchical manner where one is the executor
and the other is the executee. This type of recursive design approach can be
considered a strength of the language since it allows the modeling of different
nested execution cases (e.g. the case of a guest OS running on a VM under a
host OS and the case of an OS running an software application) using a single
solution.

Another example of such an assumption that was made is related to the
three different application privilege levels that are available in the language.
More specifically, the use of the two discrete access levels, namely low and high
privilege application access, was inspired by the fact that typically an applica-
tion is either being executed under a simple user’s (low) or root/admin’s (high)
privileges and it always is associated with one type of them, in our case called
execution privilege.

Another problem that we had to solve, again related to the level of abstrac-
tion, was that it would not be clear to users of the language to understand how
exactly each of the included assets should be used in a model. To solve this prob-
lem, first, a proper name for each one of the assets was selected, then, second, a
short documentation text about each asset was included in the language.

8 Conclusion & Future Work

Assessing the cyber security of IT infrastructures is becoming increasingly im-
portant as the number of IT security issues and cyber-attacks increases. This
article presented coreLang, which is a MAL-based domain specific language for
the abstract IT domain.

A probabilistic attack simulation language for the IT domain 17

coreLang supports a high level of modeling abstraction and is therefore suit-
able for modeling generic IT infrastructures. This higher level of abstraction
makes the developed language easier to expand since it is easier to use it as a
foundation for many different MAL-based DSLs. Finally, coreLang is an open-
source project to which anyone can contribute4.

There are several potential directions for future work and future work is
something expected since coreLang is still a work in progress and this is the first
release.

First, coreLang could be used as a foundation for the creation of extensions
that will allow the language to become more specific when needed. Since core-
Lang captures the basic IT architecture and has a high level of abstractions it
could be used as a foundation for future MAL-based DSLs. For example, some
new assets could be added in an extension file that will enhance the language
with capabilities for better specific operating system and software modeling.

Second, given the fact that software vulnerabilities are covered in a compre-
hensive way an extension could add an on par with the common vulnerability
scoring system (CVSS) [1] representation of software vulnerabilities. Then, an-
other future addition on the language would be to add defenses that are able to
either completely stop or make the attacks, that are already modeled, harder to
perform. This would allow more flexible models to be simulated without having
to change the assets that are placed in the model.

Finally, it must be noted that the goal of coreLang is to be able to model
the common IT infrastructures but not to provide the correct probabilities and
probability values for all the included attack steps. This should be considered as
more work that needs to be done separately or be part of the DSL that will use
coreLang as their foundation.

References

1. CVSS v3.1 Specification Document, https://www.first.org/cvss/v3.1/specification-
document

2. Almorsy, M., Grundy, J.: Secdsvl: A domain-specific visual language to support
enterprise security modelling. In: Software Engineering Conference (ASWEC), 2014
23rd Australian. pp. 152–161. IEEE (2014)

3. Defense Use Case: Analysis of the cyber attack on the Ukrainian power grid. Elec-
tricity Information Sharing and Analysis Center (E-ISAC) (2016)

4. Ekstedt, M., Johnson, P., Lagerström, R., Gorton, D., Nydrén, J., Shahzad, K.:
securiCAD by foreseeti: A CAD tool for enterprise cyber security management. In:
Enterprise Distributed Object Computing Workshop (EDOCW), 2015 IEEE 19th
International. pp. 152–155. IEEE (2015)

5. Engström, V., Johnson, P., Lagerström, R.: Automating Cyber Attack Simulations
Against Amazon Web Services Environments (To be published) (2020)

6. Frigault, M., Wang, L., Singhal, A., Jajodia, S.: Measuring network security using
dynamic bayesian network. In: Proc. of the 4th ACM workshop on Quality of
protection. pp. 23–30. ACM (2008)

4 https://mal-lang.org/coreLang/

18 S. Katsikeas et al.

7. Hasling, B., Goetz, H., Beetz, K.: Model based testing of system requirements using
uml use case models. In: 2008 1st International Conference on Software Testing,
Verification, and Validation. pp. 367–376. IEEE (2008)

8. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems
research. MIS quarterly 28(1), 75–105 (2004)

9. Holm, H., Shahzad, K., Buschle, M., Ekstedt, M.: P2CySeMoL: Pre-
dictive, probabilistic cyber security modeling language. IEEE Trans-
actions on Dependable and Secure Computing 12(6), 626–639 (2015).
https://doi.org/10.1109/TDSC.2014.2382574

10. Ingols, K., Chu, M., Lippmann, R., Webster, S., Boyer, S.: Modeling modern net-
work attacks and countermeasures using attack graphs. In: Computer Security
Applications Conference, 2009. ACSAC’09. Annual. pp. 117–126. IEEE (2009)

11. Johnson, P., Lagerström, R., Ekstedt, M.: A meta language for threat modeling
and attack simulations. In: Proceedings of the 13th International Conference on
Availability, Reliability and Security. p. 38. ACM (2018)

12. Katsikeas, S., Johnson, P., Hacks, S., Lagerström, R.: Probabilistic modeling and
simulation of vehicular cyber attacks : An application of the meta attack language.
In: Proceedings of the 5th International Conference on Information Systems Secu-
rity and Privacy (2019)

13. Kordy, B., Mauw, S., Radomirović, S., Schweitzer, P.: Foundations of attack–
defense trees. In: International Workshop on Formal Aspects in Security and Trust.
pp. 80–95. Springer (2010)

14. Kordy, B., Piètre-Cambacédès, L., Schweitzer, P.: Dag-based attack and defense
modeling: Don’t miss the forest for the attack trees. Computer science review 13,
1–38 (2014)

15. Lund, M.S., Solhaug, B., Stølen, K.: Model-driven risk analysis: the CORAS ap-
proach. Springer Science & Business Media (2010)

16. Mauw, S., Oostdijk, M.: Foundations of attack trees. In: International Conference
on Information Security and Cryptology. pp. 186–198. Springer (2005)

17. Morikawa, I., Yamaoka, Y.: Threat tree templates to ease difficulties in threat
modeling. In: 2011 14th International Conference on Network-Based Information
Systems. pp. 673–678 (Sep 2011). https://doi.org/10.1109/NBiS.2011.113

18. Noel, S., Elder, M., Jajodia, S., Kalapa, P., O’Hare, S., Prole, K.: Advances in
topological vulnerability analysis. In: Conference For Homeland Security, 2009.
CATCH ’09. Cybersecurity Applications Technology. pp. 124–129 (Mar 2009).
https://doi.org/10.1109/CATCH.2009.19

19. Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A Design Science
Research Methodology for Information Systems Research. Journal of Management
Information Systems 24(3), 45–77 (2007)

20. Petermann, T., Bradke, H., Lüllmann, A., Poetzsch, M., Riehm, U.: Was bei einem
Blackout geschieht: Folgen eines langandauernden und großflächigen Stromausfalls,
vol. 662. Büro für Technikfolgen-Abschätzung (2011)

21. Petit, J., Shladover, S.E.: Potential cyberattacks on automated vehicles. IEEE
Transactions on Intelligent Transportation Systems 16(2), 546–556 (2015)

22. Prokofiev, A.O., Smirnova, Y.S., Silnov, D.S.: The internet of things cybersecu-
rity examination. In: 2017 Siberian Symposium on Data Science and Engineering
(SSDSE). pp. 44–48 (2017)

23. Schneier, B.: Attack trees. Dr. Dobb’s journal 24(12), 21–29 (1999)
24. Schneier, S.: Lies: digital security in a networked world. New York, John Wiley &

Sons 21, 318–333 (2000)

A probabilistic attack simulation language for the IT domain 19

25. Stellios, I., Kotzanikolaou, P., Psarakis, M., Alcaraz, C., Lopez, J.: A survey of
iot-enabled cyberattacks: Assessing attack paths to critical infrastructures and
services. IEEE Communications Surveys Tutorials 20(4), 3453–3495 (2018)

26. Williams, L., Lippmann, R., Ingols, K.: GARNET: A graphical attack graph and
reachability network evaluation tool. Springer (2008)

27. Witty, R.J., Allan, A., Enck, J., Wagner, R.: Identity and access management
defined. Research Study SPA-21-3430, Gartner (2003)

28. Xie, P., Li, J.H., Ou, X., Liu, P., Levy, R.: Using Bayesian networks for cyber
security analysis. In: Dependable Systems and Networks (DSN), 2010 IEEE/IFIP
Int. Conf. on. pp. 211–220. IEEE (2010)

29. Yan, D., Liu, F., Jia, K.: Modeling an information-based advanced persistent threat
attack on the internal network. In: ICC 2019 - 2019 IEEE International Conference
on Communications (ICC). pp. 1–7 (2019)

