
Library-based Attack Tree Synthesis

Sophie Pinchinat, François Schwarzentruber, and Sébastien Lê Cong

Univ Rennes/IRISA/CNRS

Abstract. We consider attack trees that can contain OR-, AND- and SAND-nodes.
Relying on a formal notion of library inspired from context-free grammars, we
introduce a generic attack tree synthesis problem that takes such a library and
a trace as inputs. We show that this synthesis problem is NP-complete. The NP
membership relies on an involved adaptation of the so-called CYK parsing al-
gorithm, The NP hardness is established via a reduction from a recent covering
problem. Finally, we show that the addressed synthesis problem collapses down
to P for bounded-AND-arity libraries.

1 Introduction

In security analysis, attack trees [Sch99] offer a representation to describe many attacks
with brevity. They offer a reading of high-level explanations of attacks using different
levels of abstractions. Also, they are convenient to to perform quantitative analysis on
attacks in order to select efficient counter-measures, as well as to identify attacker pro-
files. As general objects, they are useful in various situations in the industry: they are
used for assessing the security of physical infrastructures [(NE15], cyber security plat-
forms such as voting systems [BB09] or specific machines like an ATM [FFG+16], and
also to conduct quantitative analyses of a system that uses radio-frequency identification
(RFID) technology [BKMS12].

We here informally introduce the attack tree model on a toy running example in
physical security.

Example 1. A museum has two possible entries, both monitored by the same two cam-
eras. The two cameras have a mutual protection system (distinct from the visual surveil-
lance) so that they monitor each other: if a camera gets frozen while being monitored
by the other, then an alarm is triggered. In order to neutralize a camera, the attacker
can launch a virus on any camera: this virus immediately disables its ability to monitor
the other camera, then, possibly after some time, it freezes the camera. Additionally,
the freezing is temporary so that a frozen camera may recover from freezing. The at-
tack tree of Figure 1 describes ways of attacking the museum to steal the painting:
each node of the tree matches a task, and the children of a node match the subtasks.
This tree displays three types of inner nodes, that specify how the subtasks should be
accomplished. In OR-nodes, one subtask has to be achieved. In SAND-nodes, subtasks
should be realized sequentially (from left to right). In AND-nodes, all subtasks have to
be executed in parallel. According to this tree, stealing the painting can be achieved for
example by (1) turning the security off, then (2) entering the museum, and finally (3)
taking the painting.

steal painting

turn security off enter museum

disable camera 1 disable camera 2 enter door a enter door b

take painting

OR node AND node SAND node

Fig. 1. An attack tree for stealing a painting in a museum with two doors, protected by two
security cameras.

The design of attack trees faces a tedious and error-prone process if done manually:
indeed, security experts may run into trouble as soon as the material they work on
gets fairly big (lengthy log files, for example). In this context, gathering information
becomes a complex task, and the resulting trees can get quite large. Hence, automated
attack tree synthesis, even partial, is useful.

As shown in the related-work Section2, many algorithms have been proposed for
several variants of attack tree synthesis. In particular, some previous works rely on
models for representing the accumulated expert knowledge about existing attack pat-
terns, in order to synthesize attack trees that speak to experts [JLMRC18,GJM+17].
Regrettably, the quality of the deployed algorithms can hardly be evaluated because of
a lack of results on the intrinsic complexity of the tree synthesis problem.

It is therefore desirable to have a clear understanding of the attack tree synthesis
problem(s) at a theoretical level in order to justify any algorithm. This requires a sleek
definition of the attack tree synthesis problem, generic and simple enough to capture
the core difficulty of the issue.

The present paper is about such a study. Our mathematical setting is the one of
attack trees with a trace semantics, in the spirit of [APK17,Aud18]. The main reason
for it comes from the genericity of the notion of trace. Indeed, traces can be found
in most domains: as abstractions of system executions in verification, as sequences of
events in monitoring, as log files in security, as plans in AI, as sequences of letters in
formal languages and in bioinformatics, etc.

We define the notion of library as an abstract model for some expert knowledge, in-
spired from context-free grammars [HMU07], and generic enough to resemble propos-
als from the literature on attack tree generation, and in particular the ones of [JLMRC18]
and [GJM+17].

Importantly, our approach is model-free which makes it relevant for situations where
the system model is unknown; only a trace, reminiscent of some system observation,
matters.

The synthesis decision problem, that we simply call the attack tree synthesis prob-
lem is defined as: given an input a library and an input trace, answers whether there
exists an attack tree based on the given library whose trace semantics contains the input
trace.

We prove that the attack tree synthesis problem is NP-complete. Noticeably, its NP-
hardness is obtained by reducing the recently considered “Packed Interval Covering
Problem” [SCPS19]. The NP-membership relies on a non-trivial adaptation of the clas-
sic Cocke–Younger–Kasami parsing algorithm [Kas66]. Interestingly, we highlight the
role of the AND-operator by showing a drop to the class P in the problem complexity if
the arity of this operator is bounded in the input libraries.

The paper is organized as follows: in Section 2, we consider related works and their
limits. In Sections 3 and 4, we settle the formal setting of attack trees with their trace
semantics and with the library model, respectively. Section 5 contains the full synthesis
problem study. The paper ends with a concluding section and research perspectives.

2 Related Work

We focus on the attack tree synthesis literature for the last two decades, in a chrono-
logical order; the reader interested in a survey on attack tree literature can refer to
[WAFP19] (notice that the assumptions are quite diverse, but that there is an agreement
that attack trees should help experts reasoning about ways of attacking a system). In
some contributions, the formal semantics of attack trees is omitted, which makes hard
stating properties of the generated trees, and in particular about what they desbribe.
Also some works do not define the synthesis problem as a formal problem, making
hard to evaluate the efficiency of the proposed approach with regards to the intrinsic
complexity of the problem.

In Hong et al. [HKT13], the semantics of the considered attack trees is not provided.
The tree generation does not rely on any notion of library. The input is a set of attacks
(that can be given or inferred as paths from some attack graph). Their procedure con-
siders as the first step the naive tree obtained as the complete disjunction of all input
attacks, where each attack is represented by the mere sequential conjunction of all its
actions. In a second step, (although not told this way in the paper) the procedure resorts
to controlled regular expression manipulations to make the former huge tree hopefully
smaller. The purpose of this technique is mostly used to achieve quantitative analysis in
an attack graph, and does not target readability of the tree. No meaning of the subtasks
that inhabit the internal sub-nodes can be inferred by this procedure that artificially cre-
ates internal nodes from algebraic laws on regular expressions. Also, the approach lacks
the use of AND operator that can provide more succinct trees and indeed, as explained
by the authors, the synthesized trees have exponential size in the size of the input.

Vigo et al. [VNN14] do not use a library and do not consider the sequential conjonc-
tion of subtasks (SAND operator). The input are a “program” representing the system and
a point to reach in the former. The programs are described in so-called “value-passing

quality calculus”, a calculus which derives from the π-calculus. The system program
with its point to reach is translated into a propositional formula that is interpreted as an
attack tree (with intended meaning of disjunction and conjunction operators). However,
since the internal nodes of the synthesized trees are abstract, the resulting trees are used
more for quantitative analysis than for explaining ways of attacking.

Pinchinat et al. [PAV14,PAV15] present a tool for synthesizing attack trees. The
method is very close to our approach, since it is based on a library, and on a bottom-
up construction of the tree inspired from context-free grammar syntactic analysis. The
used library is defined aside the synthesis functionality; it can be defined manually in
the tool, but may also be imported from previous projects. However, the procedure does
not support operator AND.

In the setting of Ivanova et al. [IPHK15], the authors suggest a high-level language
intended to turn a graph, a so-called “graphical system model”, into an attack tree with
the intention to make the graph more readable. Those graphical models specify an initial
state of some system – vertices represent elements (such as doors, agents, information,
and so on), and the attacker has to reach some final configuration. The translation from
one setting to another does not rely on a precise semantic framework. The translation
from the graph to an attack tree is generic, not taking advantage of any specific expert
knowledge. The library is implicitly based on ad-hoc patterns (with first-order logic
features) correlated with fixed ontologies (locations, actors, processes, items). As a re-
sult, the obtained trees are unbalanced, and not readable. Also, only disjunction and
sequential conjunction are considered.

Gadyatskaya et al. [GJM+17] define a library-based generic synthesis problem pa-
rameterized by the semantics of attack trees. The library is called a refinement specifica-
tion. However, the paper focuses on the particular serie-parallel graph (SP) semantics,
where the AND operator has a truly-concurrent meaning. Surprisingly, the authors re-
strict to SP graphs without any AND operator, that is as a set of traces. This prevents to
address the synthesis problem for arbitrary refinement rules. Also, the paper does not
provide the complexity analysis of the addressed synthesis problem. The tree models we
consider here are not based on actions (at the leaves), but it can be established that our
semantics semantics coincides with the SP semantics if the AND operator is discarded.
Our synthesis problem can therefore be seen as a restriction of their work to a singleton
set of single traces, but also as an extension of it as we allow one to AND operator.

Jhawar et al. [JLMRC18] consider the issue of automating the completion of an
attack tree rather than synthesizing one, by an iterated top-down approach. A criterion
based on annotations of nodes with preconditions and postconditions, makes it possible
to attach subtrees from some library at some leaves. The logical setting to describe the
annotations lacks dynamic features (such as temporal modalities) amenable to the use
sequential conjunction.

In [APSW18], Audinot et al. study the non-emptiness of an attack tree, in a frame-
work similar to what we consider here: given an attack tree, they query the existence
of an attack described by the input tree. Our problem can be read as the dual of this
problem since the trace is known but the tree has to be found.

3 Attack Trees and Their Trace Semantics

We consider the setting of [APK17], where attack tree leaves are labeled by atomic
goals, but due to our concern, we equip them with a trace semantics instead of a path
semantics, in natural manner. Indeed, traces are mere abstraction of finite paths (in some
transition system), by replacing each state along the path by its set of true facts; thus a
trace is a finite sequence of facts. In formal approaches facts are modeled by abstract
propositions in a set Prop = {p, q, r, . . .}.

An atomic goal at a leaf of an attack tree is composed of a precondition and a
postcondition, and denotes the set of finite sequences of true propositions where the
precondition holds at their beginning and the postcondition holds at their end. The trace
semantics of a non-leaf attack tree is given in a compositional manner by means of
operations on (sets of) finite sequences, such as concatenation.

We now get into the formal definitions.

3.1 Attack Trees

Formally, an attack tree is a tree whose leaves are atomic goals of the form 〈ι to γ〉,
where ι and γ are Boolean formulae over a set of atomic propositions Prop, called the
precondition and the postcondiion respectively. Each inner node of an attack tree is
labelled by some operator OP ranging over OR (disjunction), SAND (sequential conjunc-
tion) or AND (conjunction), and is called an OP-node.

¬monitor2

to frozen1

¬monitor1

to frozen2

frozen1∧frozen2

to entera

frozen1∧frozen2

to enterb

entera∨enterb

to hasPaint

Fig. 2. The formal attack tree for the museum example.

Example 2. Figure 2 shows a formalisation of the informal attack tree from Figure 1,
with 3 inner nodes and 5 leaves. Propositions occurring in the atomic goals of the
leaves are interpreted as follows: monitori means “camera i is being monitored (by
the other camera)”, frozeni means “camera i is frozen”, enter j means “entered in
museum via door j”, and hasPaint means “the painting was stolen”. Therefore, the
atomic goal 〈¬monitor2 to frozen1〉 models the task of hacking camera 1: launching
the virus immediately stops camera 1 from monitoring camera 2 and eventually freezes
camera 1. Symmetrically, goal 〈¬monitor1 to frozen2〉 regards the hacking of cam-
era 2. We will elaborate on the camera-hacking phase later, in Subsection 3.4. Also,

goal 〈frozen1∧frozen2 to entera〉 models the task of entering the museum via door
a without surveillance.

Definition 1 (Attack tree). An attack tree τ (over Prop) is:

– either a leaf of the form 〈ι to γ〉 where ι, γ are Boolean formulae over Prop;
– or a construction OP(τ1, . . . , τm) where OP is the operator OR, AND or SAND, m ≥ 1

is the arity, and τ1, . . . , τm are attack trees.

In Definition 1 we confuse a node and the subtree rooted at that node. This is stan-
dard when trees are defined inductively.

Example 3. The attack tree given in Figure 2 is

SAND(AND(〈¬monitor2 to frozen1〉, 〈¬monitor1 to frozen2〉),
OR(〈frozen1 ∧ frozen2 to entera〉,
〈frozen1 ∧ frozen2 to enterb〉),
〈entera ∨ enterb to hasPaint〉)

The second central objects of concern are traces.

3.2 Traces and operations on sets of traces

Executions of systems are alternating sequences consisting of states and actions. In
our setting for attack trees, the focus is put on states. In fact, the states themselves
are not “observable” along an execution, but only the truth value of facts/propositions
about them. A truth value of propositions is formally captured by the standard notion
of valuation in propositional logic. Thus an observation of a (finite) execution, usually
called a trace [BK08], is a finite sequence of valuations; two successive valuations in a
trace correspond to a state transition in the observed system.

We now formally define traces, sets of traces, and particular operations over lan-
guages that provide the semantics of operators OR, SAND and AND in attack trees.

For the rest of this section, we fix a set Prop of propositions.
A valuation is a subset of Prop with the meaning that propositions in this set are

true while the others are false; for the empty valuation ∅, all propositions are thus false.
We therefore write 2Prop for the set of valuations on the set Prop, with typical element
ν ∈ 2Prop. Given a Boolean formula ϕ over Prop, we write ν |= ϕ to denote that ν
satisfies ϕ.

Traces are finite sequences of valuations, and we denote by ε for the empty se-
quence. Given a trace t ∈ (2Prop)∗, the length |t| of t is defined as its number of val-
uations. For 1 ≤ i ≤ |t|, the ith valuation of t is denoted by t(i). We set t.first = t(1)
and t.last = t(|t|) and we denote by t[i, j] the subsequence of t starting at position i and
ending at position j. For instance, if t = ν1ν2ν3ν4ν5, then t.first = ν1, t.last = ν5 and
t[2, 4] = ν2ν3ν4.

Example 4. Consider {monitor1} {monitor1} ∅ {frozen1} {frozen1, frozen2}

{enterb, frozen1, frozen2} {hasPaint, frozen1, frozen2} a trace of length 7 from
the museum example. It reflects the scenario where, during the first two timesteps, both
cameras work, camera 1 is monitored and camera 2 is not. At the third step, camera 1
is not any more monitored. Then, camera 1 is frozen, before camera 2. Next, the in-
truder enters the building via door b while both cameras are frozen, and finally steals
the painting while the cameras are still frozen.

In the following, we may write traces with arrows between their valuations in order
to emphasize the underlying state transitions that take place: t = ν1 → ν2 → ν3 →

ν4 → ν5.
Regarding the trace semantics of attack trees that will be given in Definition 4, the

OR operator will be understood as the union operation over sets of traces, whereas the
two other operators SAND and AND will be given less classic interpretations that we
present now.

3.3 Synchronized concatenation

The synchronized concatenation � slightly differs from the usual concatenation in for-
mal languages and conveys the notion of sequential executions of scenarios; it will
provide the semantics of the SAND operator in attack trees.

Definition 2 (Synchronized concatenation).
The synchronized concatenation of two traces is defined only if the last valuation of

the former is equal to the first valuation of the latter, and simply concatenates the two
traces by merging this common element. Formally,

ν1 . . . νnν� νν′1ν
′
2 . . . ν

′
m = ν1 . . . νnνν

′
1 . . . ν

′
m.

Example 5. {frozen1, frozen2} {enterb, frozen1, frozen2}�{enterb, frozen1, frozen2}

{hasPaint, frozen1, frozen2} = {frozen1, frozen2} {enterb, frozen1, frozen2}

{hasPaint, frozen1, frozen2}; the synchronized concatenation is possible thanks to
the common matching valuation {enterb, frozen1, frozen2}.

The synchronized concatenation � is associative, so that binary � suffices. We lift
the synchronized concatenation to sets L, L′ of traces by letting

L � L′ =
{
t � t′ | t ∈ L, t′ ∈ L′ and t � t′ is defined

}
.

3.4 Parallel composition

The parallel composition written ! is adapted from [APK17] to traces. This operation
reflects the meaning of achieving subgoals in a concurrent manner, and aims at captur-
ing what the AND operator expresses in attack trees. We motivate its definition on an
example with the concurrent achievement of two atomic goals: consider the AND-node
from Figure 2 and the following trace (a prefix of the trace in Example 4) realizing a

successful hacking of both cameras, namely goal 〈¬monitor2 to frozen1〉 and goal
〈¬monitor1 to frozen2〉.

︸ ︷︷ ︸
〈¬monitor2 to frozen1〉

{monitor1} → {monitor1} →

〈¬monitor1 to frozen2〉︷ ︸︸ ︷
∅→ {frozen1} → {frozen1, frozen2} (1)

Right from the start, camera 1 gets a virus and cannot monitor camera 2 (monitor2
is false). The observation does not change for one step, and then, camera 2 gets infected
too (monitor1 turns false). Then, camera 1 gets frozen first (frozen1), and next camera
2 does too (frozen2). Realizing the conjunction of the hacking subgoals means that
they are executed concurrently: any transition of the global hacking task falls under
one of the hacking subgoals, and the global task is embedded in the achievement of
both subgoals. On the contrary, the following trace does not reflect a conjunction of the
two hacking subgoals because the second transition does not serve any of the hacking
subgoals.
{monitor1} → {monitor1, frozen1}︸ ︷︷ ︸

〈¬monitor2 to frozen1〉

→ {monitor2} → {monitor2, frozen2}︸ ︷︷ ︸
〈¬monitor1 to frozen2〉

In concrete terms, a virus is launched on camera 1, then camera 1 gets frozen, then
a virus is launched on camera 2 while camera 1 gets back to normal operation, then
finally, camera 2 gets frozen. In this scenario, the second hacking task starts too late
and the alarm is triggered (camera 1 is able to notice the discrepancy in camera 2’s
behaviour). The AND-node of the tree expresses that it is necessary for the two hacking
subgoals to take place with some overlapping of their transitions to be successful. This
is formalized in Definition 3 as parallel composition of traces which can be interpreted
as follows: if one sees a trace, of length n, as displaying some “activity”, every transi-
tion (i.e., action) along this trace corresponds to a 1-length subinterval [k, k+1] ⊆ [1, n],
while subgoals correspond to arbitrary subintervals. In the example, the camera 1 hack-
ing subgoal of the 5-length trace of Expression (1) corresponds to subinterval [1, 4] and
the camera 2 hacking subgoal corresponds to subinterval [3, 5]. Therefore each transi-
tion along this trace serves at least one of the two camera hacking subgoals.

More formally, let us say that the intervals I1, . . . , Im cover an interval I whenever
m⋃
`=1

I` = I and each [k, k + 1] ⊆ I is contained in some I`.

We can now proceed to the formal definition of the parallel composition.

Definition 3 (Parallel composition). A trace t is a parallel composition of traces t1, . . . tm
if there are m intervals I1, . . . , Im that cover [1, n] and such that t[I`] = t`, for every
1 ≤ ` ≤ m. We also simply say that traces t1, . . . tm cover trace t.

Example 6. Figure 3 shows that the trace t = ν1 . . . ν7 is a parallel composition of traces
t1, t2 and t3 with respective intervals [1, 2], [4, 7], [2, 5]. Indeed, all transitions ν1 → ν2,
ν2 → ν3, . . . , ν6 → ν7 are covered. On the contrary, t is not a parallel composition of t1,
t2 and t′3 since the only interval candidates are respectively [1, 2], [4, 7], [3, 5], but none
of them fully includes the subinterval [2, 3]. In other words, the transition ν2 → ν3 is
not covered.

trace t: ν1 ν2 ν3 ν4 ν5 ν6 ν7

trace t1: ν1 ν2

trace t2: ν4 ν5 ν6 ν7

trace t3: ν2 ν3 ν4 ν5

trace t: ν1 ν2 ν3 ν4 ν5 ν6 ν7

trace t1: ν1 ν2

trace t2: ν4 ν5 ν6 ν7

trace t′3: ν3 ν4 ν5

Fig. 3. The trace t is a parallel composition of t1, t2, t3 but not of t1, t2, t′3.

The parallel composition reflects the conjunctive execution of activities and not
the conjunction of the effects of these activities, which is a legitimate interpretation of
the AND operator in attack trees (see the serie-parallel graph semantics considered in
[GJM+17]). Typically, requiring to open and to close a door does mean to attain a situ-
ation where the door is both open and closed.

Traces t1, . . . tm may cover several traces, i.e. may have several parallel composi-
tions. We let !(t1, . . . , tm) be the set of parallel compositions of t1, . . . tm.

Example 7. !(ν′νν, ννν′′) = {ν′ννν′′, ν′νννν′′}.

We lift the parallel composition to sets L1, . . . , Lm of traces by letting

!(L1, . . . , Lm) =
⋃

t1∈L1,...,tm∈Lm

!(t1, . . . , tm).

It should be remarked that the synchronized concatenation � is associative, so that
binary � suffices, while this is not the case of ! in general: for example, ν1ν2ν3ν4 ∈

!(ν1ν2, ν3ν4, ν2ν3), but !(!(ν1ν2, ν3ν4), ν2ν3) = ∅ because ν1ν2 and ν3ν4 do not share
any valuation.

3.5 Trace semantics of attack trees

Now, we define the trace semantics of attack trees. Operators in attack trees are in-
terpreted as operations on trace sets: OR means union ∪, SAND means synchronized
concatenation �, and AND mean parallel composition !.

Definition 4 (Trace semantics of attack tree). The trace semantics of an attack tree τ
is a set of traces L(τ) ⊆ (2Prop)∗, inductively defined on τ:

L(〈ι to γ〉) = {t ∈ (2Prop)∗ | t.first |= ι and t.last |= γ};
L(OR(τ1, . . . , τm)) = L(τ1) ∪ . . . ∪ L(τm);
L(SAND(τ1, . . . , τm)) = L(τ1) � . . .� L(τm);
L(AND(τ1, . . . , τm)) = !(L(τ1), . . . , L(τm)).

Since the SAND operator relies on the associative operation �, we may sometimes as-
sume for convenience and w.l.o.g. that the degree of the SAND-nodes is 2. In contrast,
such an assumption would not hold for operator AND since to ! is not associative.

Example 8. Revisiting the attack tree τ from Example 3, the following trace from Ex-
ample 4 is a possible trace of the musuem example that can be explained by the tree τ,
i.e., that is in L(τ):

{monitor1}{monitor1}∅{frozen1}{frozen1, frozen2}{enterb, frozen1, frozen2}

{hasPaint, frozen1, frozen2}.

Indeed, first its prefix {monitor1}{monitor1}∅ {frozen1}{frozen1, frozen2} belongs
to L(AND(〈¬monitor2 to frozen1〉, 〈¬monitor1 to frozen2〉)), as a parallel composi-
tion of {monitor1}{monitor1}∅{frozen1} ∈ L(〈¬monitor2 to frozen1〉) and
∅{frozen1}{frozen1, frozen2} ∈ L(〈¬monitor1 to frozen2〉). Second, its factor
{enterb, frozen1, frozen2} ∈ L(〈frozen1∧frozen2 to entera〉), thus its belongs to
the trace semantics of the subtree of τ rooted at the OR-node. Third, its suffix
{enterb, frozen1, frozen2}{hasPaint, frozen1, frozen2} achieves the last subgoal
goal of SAND-node root of τ.

4 Libraries

The attack tree synthesis problem seems trivial: the single-node tree 〈> to >〉, where
formula > means tautologically true, explains any trace! In order to synthetize interest-
ing attack trees, we consider a library, that is a set of refinement rules, alike a context-
free grammar rules. We will as much as possible keep close to notations introduced in
[GJM+17]: for instance, we use ρ to denote a refinement rule.

In a context-free grammar style, we consider G a finite set of non-terminal goals,
with typical elements g, g1, g2, and terminal goals that are atomic goals 〈ι to γ〉 (where
ι, γ are Boolean formulae).

Definition 5 (Refinement rules and library). A refinement rule (over G) ρ is either
a so-called elementary rule g C 〈ι to γ〉 where ι, γ are Boolean formulae; or a rule
g C OP(g1, . . . , gm) where OP is an operator, m ≥ 1, and g1, . . . , gm ∈ G.
A refinement rule g C OP(g1, . . . , gm) refines g.

The arity of a refinement rule is 0 if it is elementary, and the arity of the operator
OP appearing in the rule otherwise.

A library L over G is a finite set of refinement rules (over G). The size of L is
the total number of non-terminal goal occurrences that appear in all its rules, both in
left-hand and right-hand sides of rules.

Example 9. Let us continue with the museum example where we add the proposition
incenter read as “the intruder is in the control center”. The following set of rules
Lmuseum is library (and relies on the vocabulary of Example 2), where non-terminal
goals are sentences written in italic to emphazise their role in our model of a library.



go to center C 〈> to incenter〉
blow up a bomb C 〈incenter to frozen1 ∧ frozen2〉

enter via door a C 〈frozen1 ∧ frozen2 to entera〉

enter via door b C 〈frozen1 ∧ frozen2 to enterb〉

take C 〈entera ∨ enterb to hasPaint〉
disable camera 1 C 〈¬monitor2 to frozen1〉

disable camera 2 C 〈¬monitor1 to frozen2〉

steal C SAND(disable camera , enter, take)
disable cameras C AND(disable camera 1, disable camera 2)
disable cameras C SAND(go to center, blow up a bomb)
enter C OR(enter via door a, enter via door b)

Goal go to center represents reaching the control center (without any precondition,
which is written >), while goal blow up a bomb represents setting up a bomb that will
disable both cameras while being in the control center. The other goals are clear. Note
that there are two rules that refine goal disable cameras which reflects different ways
of disabling both cameras. Allowing for different refinement rules for an abstract goal
is of utter importance because libraries are filled by experts analysing different systems:
for example, the rule to hack a USB key may drastically vary depending on the under-
lying OS. Encapsulating alternatives into a single OR mean that they may occur in the
same system. Having a different rule for each alternative means that they correspond to
different systems.

We now fix a library L over some set of non-terminal goals G. We define L-attack
trees, in the spirit of what was called a “correct tree” in [GJM+17]: intuitively, they are
attack trees obtained by iteratively applying refinement rules of the library on leaf-nodes
until the leaves correspond to atomic goals.

Definition 6 (L-attack tree). An L-attack tree is an attack tree τ (in the sense of Def-
inition 1) equipped with a mapping ` that maps every node of τ onto a non-terminal
goal of G in such a way that:

– if x is a leaf 〈ι to γ〉, then the rule `(x) C 〈ι to γ〉 is in L;
– if x is a node OP(x1, . . . , xk) then the rule `(x) C OP(`(x1), . . . , `(xk)) is in L.

The label `(x) of a node in Definition 6 is a non-terminal goal. This non-terminal
goal arising from the librairy carries information, such a text – as done in Example 9, or
a CVE identifier1. It is this information that makes L-attack trees readable to experts.

Example 10. Figure 4 shows two Lmuseum-attack trees for Lmuseum defined in Exam-
ple 9.

We say that the non-terminal goal g derives the trace t if there exists an L-attack
tree τ whose root’s label is g and such that t is in L(τ).

Given a library L, we can always manage to find an equivalent library L′ where
all SANDs are binary, in the sense that the trace semantics an L′-attack tree is equal to

1 CVE is a dictionary of publicly disclosed cybersecurity vulnerabilities and exposures https:
//cve.mitre.org/cve/.

https://cve.mitre.org/cve/
https://cve.mitre.org/cve/

steal

disable cameras enter

disable camera 1

¬monitor2

to frozen1

disable camera 2

¬monitor1

to frozen2

enter via door a

frozen1∧frozen2

to entera

enter via door b

frozen1∧frozen2

to enterb

take

entera∨enterb

to hasPaint

steal

disable cameras enter

go to center

〈> to incenter〉

blow up a bomb

incenter

to frozen1 ∧ frozen2

enter via door a

frozen1∧frozen2

to entera

enter via door b

frozen1∧frozen2

to enterb

take

entera∨enterb

to hasPaint

Fig. 4. Two Lmuseum-attack trees.

trace semantics of some L-attack trees, and vice versa. Note that L′ can be computed
in polynomial time in the size of L.

In the rest of this paper, we assume that every refinement rule based on SAND oper-
ator has arity 2.

Table 1 sums up the formal notions defined so far.

Formal notions Intuitive meanings
a trace an observed attack (e.g. a log file)
an attack tree (Def. 1) an explanation of an observed attack
a non-terminal goal a high-level attack objective
a refinement rule a known attack tree pattern
a library (Def. 5) a set of known attack tree patterns
an L-attack tree (Def. 6) an explanation of an observed attack constructed with the known attack-

tree patterns in L

Table 1. Important formal notions defined in the paper.

5 Attack Tree Synthesis

The attack tree synthesis problem consists in building a tree (if any) that explains an
observed trace t (e.g. a log file) in terms of a given library L. Formlly, we address the
underlying decision problem for analyzing the complexity for this synthesis problem,
but the developped algorithm does build a tree.

Definition 7 (Attack tree synthesis problem).

– Input: a library L, a trace t ∈ (2Prop)∗.
– Output: is there an L-attack tree τ such that t ∈ L(τ)?

The rest of this section is dedicated to the proof of the following theorem.

Theorem 1. The attack tree synthesis problem is NP-complete. Furthermore, the syn-
thesis problem restricted to libraries in which the arity of AND is bounded is in P.

For proving the NP-hardness of the attack tree synthesis problem, we identify a
decision problem as the core of the synthesis problem: the “Packed Interval Covering
Problem” [SCPS19].

5.1 A detour on the Packed Interval Covering Problem

The Packed Interval Covering Problem (PIC) is a cover problem, where one has to cover
a given interval using one interval from each given pack. It is defined as follows.

– Input: a non-empty interval I of integers and a family of finite sets P1, . . . , Pm

(packs) of subintervals of I.
– Output: are there subintervals I1 ∈ P1, . . . , Im ∈ Pm such that I =

⋃
k=1..m

Ik?

Example 11. We borrow the example in [SCPS19]: for interval [1, 9], there are three
packs {[1, 6], [5, 9]}, {[1, 3], [4, 6], [7, 7]}, {[4, 4]}. Interval [1, 9] can be covered by se-
lecting [5, 9], [1, 3] and [4, 4] in the respective packs, as shown in Figure 5.

pack No 1

pack No 2

pack No 3

1 2 3 4 5 6 7 8 9

Fig. 5. Example of an instance of the Packed Interval Covering Problem.

Theorem 2 ([SCPS19]). PIC is NP-complete.

Proof. See Appendix A.

5.2 NP-hardness of the synthesis problem

We establish a reduction from PIC to the attack tree synthesis problem.
Consider an arbitrary instance of PIC with target interval I = [1,N] and packs

(Pk)1≤k≤m, each of the form Pk = {[mk
j, n

k
j] | 1 ≤ j ≤ |Pk |}.

We now describe an instance 〈L, t〉 of the attack tree synthesis problem as follows.
Take N distinct propositions p0, . . . , pN .

First, define trace t = {p0} . . . {pN} to encode the target interval [1,N]: each subtrace
{pi−1}{pi} of t of length 2 is intended to match integer i ∈ [1,N].

Second, the library L contains exactly the following rules.

– Rule gselect(k, j) C 〈pmk
j−1 to pnk

j
〉 for every k ∈ {1, . . . ,m} and every j ∈ {1, . . . , |Pk |}

that amounts to requiring that if the j-th interval [mk
j, n

k
j] of pack Pk is selected,

then it is covered;
– Rule gpack(k) C OR(gselect(k, 1), . . . , gselect(k, |Pk |)), for every k ∈ {1, . . . ,m} requiring to

select one of the |Pk | intervals in the pack Pk;
– Rule gunion C AND(gpack(1), . . . , gpack(m)) expressing that one must select an interval

in each pack Pk;

Example 12. For the PIC instance of Example 11, we get trace

t = {p0}{p1}{p2}{p3}{p4}{p5}{p6}{p7}{p8}{p9}

and the following library:

gunion C AND(gpack(1), gpack(2), gpack(3))
gpack(1) C OR(gselect(1, 1), gselect(1, 2))
gpack(2) C OR(gselect(2, 1), gselect(2, 2), gselect(2, 3))
gpack(3) C OR(gselect(3, 1))
gselect(1, 1) C 〈p0 to p6〉

gselect(1, 2) C 〈p4 to p9〉

gselect(2, 1) C 〈p0 to p3〉

gselect(2, 2) C 〈p3 to p6〉

gselect(2, 3) C 〈p6 to p7〉

gselect(3, 1) C 〈p3 to p4〉

The obtained instance 〈L, t〉 is computed in polynomial time from the PIC instance
〈I, P1, . . . , Pm〉. Clearly, the instance 〈L, t〉 of the attack tree synthesis problem is pos-
itive if, and only if, the original PIC instance 〈I, P1, . . . , Pm〉 is positive. Indeed, there
is a correspondence between the choice of intervals in packs, and the children of nodes
labelled by gpack(1), . . . , gpack(m) whose respective semantics exhibits m subtraces that
cover the full trace t.

5.3 NP-membership of the synthesis problem

The following table shows the correspondence between some refinement rules and
context-free grammars (CFG) rules in formal languages. Notice that there is no gram-
mar rules counterpart for refinement rules with an AND operator.

Refinement rule CFG production rule
g C 〈ι to γ〉 X → a

g C OR(g1, g2) X → Y | Z
g C SAND(g1, g2) X → YZ

Still, we are able to design an algorithm based on a variant of the classic bottom-up
parsing algorithm “Cocke–Younger–Kasami algorithm” (CYK) [Kas66,You67,Sip97].
The original algorithm answers whether some input context-free grammar can generate
some input word. It relies on a dynamic programming solution that computes, for each
subword by increasing length, the set of non-terminals that generate it.

Algorithm design As in CYK, we handle sets Goals[i, j] that collect goals of G that
derives the subtrace t[i, j]. Nevertheless, we cannot rely on the mere dynamic program-
ming anymore since the three operators do not necessarily make use of decreasing in-
tervals. The following example illustrates the phenomenon with an artificial example of
library.

Example 13. For Prop = {p1, p2, p3, p4}, take trace t = {p1}{p2}{p3}{p4} and the fol-
lowing library L: 

ρ1 : g C OR(g′) ρ5 : g C 〈p2 to p3〉

ρ2 : g′ C SAND(g, g) ρ6 : g′ C 〈p1 to p1〉

ρ3 : g C SAND(g′, g) ρ7 : g′ C 〈p1 to p2〉

ρ4 : g C SAND(g′, g′′) ρ8 : g′′ C 〈p3 to p4〉

Figure 6 shows an L-attack tree for the trace t. Although the nodes marked * and the
node marked ** are at different levels in the tree, we will see that both arise when
computing Goals[1, 3] to parse subtrace t[1, 3] = {p1}{p2}{p3}.

g

g′

g

g′

〈p1 to p1〉

g

g′

〈p1 to p2〉

g
〈p2 to p3〉

g′′

〈p3 to p4〉
*

**

Fig. 6. An L-attack tree for t.

Let us zoom on a bottom-up parsing of the trace t, by successively increasing the
length of the subintervals [i, j] to compute Goals[i, j] that parses t[i, j].

During the treatment of the 1-length interval [1, 1], g′ is put in Goals[1, 1] thanks to
Rule ρ6, which allows next to add g by Rule ρ1; Goals[2, 2] and Goals[3, 3] are empty.

We skip the computation for intervals of length 2, and focus on the treatment of
interval [1, 3]: in order to obtain the subtree of Figure 6 rooted at node marked * for
subtrace t[1, 3], the parsing procedure should have added goal g in Goals[1, 3] accord-
ing to Rule ρ3 (corresponding to the marked ** node) before adding g′ (node *) thanks
to Rule ρ2. But because of the mutual recursivity of the rules, it seems difficult to know
a priori which of Rule ρ2 and Rule ρ3 should be considered first.

In order to face the potential inability to exhibit a hierarchy of the rules for an
arbitrary input library, we propose an algorithm that iterates on rules until stabilisation
for each interval of the input trace.

Importantly, the ability to solve the synthesis problem even for libraries with mutual
recursivity between rules is not a mere technical achievement but a true need: indeed,
libraries may be fed incrementally by uncoordinated experts, which prevents us from
requiring any sort of (in)dependencies between rules. Thus restricting to non recursive
libraries (as for the museum Example 9) would be a very limited solution.

Regarding the technical aspects of our algorithm, the parsing of SAND-rules is han-
dled with a minor adaptation of the CYK algorithm because of the tiny difference be-
tween classic concatenation and synchronized concatenation. On the contrary, since
AND-rules of libraries do not have any counterpart in CF grammars, we resort to a novel
method based on non-deterministically guessing one interval per subgoal, hence a non-
deterministic algorithm.

Algorithm pseudo-code Algorithm 1 presents the pseudo-code of our non-deterministic
algorithm that decides the attack tree synthesis in polynomial-time.

As in CYK, we consider each interval [i, j] of [1, n] by increasing length (line 1), and
we compute Goals[i, j] (in the repeat-until loop, lines 2-18) that is a set of goals that
match t[i, j] (possibly the set of exactly all such goals when the right non-deterministic
choices are taken).

We iterate over all the rules of the library and update Goals[i, j] according to the
semantics given in Definition 4. For a rule g C 〈ι to γ〉, we add the goal g to Goals[i, j]
when ι holds at time i and γ holds at time j. For a rule g C OR(g1, . . . , gm), as long there is
a goal gk in Goals[i, j], we add g to Goals[i, j]. For a rule g C SAND(g1, g2), if there is a
midposition t between time i and j such that g1 is in Goals[i, t] and g2 is in Goals[t, j],
we add g to Goals[i, j]. For a rule g C AND(g1, . . . , gm), we first non-deterministically
choose intervals I1, . . . , Im included in [i, j]. In the case I1, . . . , Im is a covering of
[i, j] and goals g1, . . . , gm are respectively in Goals[I1], . . . , Goals[Im], we add g in
Goals[i, j]. Note that if g is added in Goals[i, j] then the rule g C AND(g1, . . . , gm) can
be applied to construct an attack tree. The reverse is false: it might be the case that the
rule g C AND(g1, . . . , gm) can be applied although g is not added to Goals[i, j]. Nev-
ertheless, if the rule g C AND(g1, . . . , gm) can be applied then there is an execution in
which the goal g is added to Goals[i, j].

At the end, the input is accepted exactly when Goals[1, n] is not empty, that is,
when the algorithm found that there is an attack tree for the full trace t.

Proposition 1 states the main properties of Algorithm 1.

Algorithm 1 attackTreeSynthesis(L, t): it has an accepting execution iff there is
an L-attack tree whose semantics contains t.

1: for all intervals [i, j] of [1, n] by increasing length do
2: repeat
3: for all rules ρ in L do
4: match ρ do
5: case g C 〈ι to γ〉:
6: if t(i) |= ι and t(j) |= γ then
7: Goals[i, j] := Goals[i, j] ∪ {g}
8: case g C OR(g1, . . . , gm):
9: if there is 1 ≤ k ≤ m and gk ∈ Goals[i, j] then

10: Goals[i, j] := Goals[i, j] ∪ {g}
11: case g C SAND(g1, g2):
12: if there is i≤t≤ j such that g1∈Goals[i, t] and g2∈Goals[t, j] then
13: Goals[i, j] := Goals[i, j] ∪ {g}
14: case g C AND(g1, . . . , gm):
15: non-deterministically choose I1, . . . , Im ⊆ [i, j]
16: if I1, . . . , Im covers [i, j] and g1 ∈ Goals[I1] and . . . and gm ∈ Goals[Im] then
17: Goals[i, j] := Goals[i, j] ∪ {g}
18: until Goals[i, j] stabilises
19: if (Goals[1, n] , ∅) accept else reject

Proposition 1.

1. Executions of attackTreeSynthesis(L, t) have length in poly(size(L) + |t|).
2. (Soundness) If there is an accepting execution of attackTreeSynthesis(L, t),

then there is an L-attack tree τ such that t ∈ L(τ).
3. (Completeness) If there is an L-attack tree τ such that t ∈ L(τ), then there is an

accepting execution of attackTreeSynthesis(L, t).

Proof. Since at each iteration of the repeat-until loop (lines 2-18) the set Goals[i, j]
is increasing and bounded by finite G (and the rest is clearly polynomial), we ob-
tain Point 1. Also, the invariant “for all executions of attackTreeSynthesis(L, t),
Goals[i, j] is included in the set of goals that derive t[i, j]” entails Point 2. Finally, it
suffices to consider the execution that chooses the right intervals at line 15 to get Point 3.

By Proposition 1, the attack tree synthesis problem is in NP.To achieve the proof of
Theorem 1, it remains to restrict to libraries with bounded-arity AND-rules.

5.4 Libraries with bounded-arity AND-rules

It can be observed that the combinatorics of the unbounded AND operator contributes to
the problem’s complexity. By bounding the AND operator arity in libraryL, the resulting
subclass of the synthesis problem falls into P.

To see this, observe that bounding the AND operator arity yields a polynomial num-
ber of covers, so that line 15 of Algorithm 1 can be replaced by a for-loop over all
covers that executes a polynomial number of times in the arity m.

6 Conclusion

We have presented a mathematical setting that addresses an attack tree synthesis prob-
lem. In this contribution, we rely on a formal trace semantics of attack trees inspired
from the path semantics proposed, e.g., in [APK17,APK18]. Our setting exploits the
ontology of library whose rules describe how a subgoal can be refined into a combina-
tion of subgoals; such combinations rely on any of the classic tree operators OR, SAND,
and AND. The synthesis problem has two inputs: a library and a trace. It consists in
building an attack tree whose refinements are provided by the input library and whose
semantics contains the input trace. We have established that the (associated decision)
problem is NP-complete. However, the proposed algorithm is only polynomial in the
size of the trace. This is good news for the two following reasons. First, traces might be
long objects (e.g., log files). Second, the exponential blow up caused by the arity of AND
rules in libraries should be tamed in practice: the library is often fixed, and a manually
entered AND-rule in this library is unlikely to have a huge arity.

Regarding synthesis, our algorithm can be easily extended to keep track of subtrees:
each time a goal is added in Goals, there is a matching subtree that we could build – as
done for the classic CYK algorithm to return the syntactic tree of a parsed word. This
is very classic in dynamic programming and can still be exploited in our case.

Recently, new operators have been proposed to combine subgoals, among which
weak variants of existing operators, as done in [MP19] and [PFWT19]. It can be shown
that our algorithm extends without increasing the complexity for latter these operators.

This contribution opens several perspectives both theoretical and practical.

Theoretical level (1) We can investigate the use of first-order formulas in atomic goals
〈ι to γ〉, which would encompass the kinds of rules in [JLMRC18] and [IPHK15]. We
foresee the need for pattern-matching techniques or Robinson’s unification that may
impact the theoretical complexity of the problem. (2) We may also relax the problem
by not synthesizing a single tree, but a minimal number of trees where each one parses
a piece of the input trace – this can be formalized). (3) We have to go beyond the case
of a single trace, and synthesize a tree whose semantics contains (or equals) an input
finite set of traces. This has already been addressed in [GJM+17] for the restricted case
of OR and SAND-rules only, and regrettably with an incomplete procedure; the authors
write that their procedure “either generates a correct tree or aborts” (in contrary, our
approach is complete, see Point 3 of Proposition 1).

Practical level We foresee two main tracks. The first track regards the lengthy traces
arising from concrete log files. Even if our algorithm is polynomial in this parameter,
scalability is still an issue. We may explore abstractions of traces (e.g., modulo stutter-
ing equivalence), or subclasses of libraries with efficient parsing methods (e.g., of the
type LL(1)). The second track is ambitious and aims at bridging the gap between formal
libraries and libraries in practice, such as the knowledge base of adversary tactics MIT-
TRE ATT&CK2. We are not aware of any significant advance but of a humble recent
degree project [ÅS19]3. This topic should become very hot in the near future.

2 https://attack.mitre.org/.
3 http://www.diva-portal.org/smash/get/diva2:1350884/FULLTEXT01.pdf

https://attack.mitre.org/
http://www.diva-portal.org/smash/get/diva2:1350884/FULLTEXT01.pdf

References

APK17. Maxime Audinot, Sophie Pinchinat, and Barbara Kordy. Is My Attack Tree Cor-
rect? In Simon N. Foley, Dieter Gollmann, and Einar Snekkenes, editors, Computer
Security - ESORICS 2017 - 22nd European Symposium on Research in Computer
Security, Oslo, Norway, September 11-15, 2017, Proceedings, Part I, volume 10492
of Lecture Notes in Computer Science, pages 83–102. Springer, 2017.

APK18. Maxime Audinot, Sophie Pinchinat, and Barbara Kordy. Guided design of attack
trees: A system-based approach. In 31st IEEE Computer Security Foundations Sym-
posium, CSF 2018, Oxford, United Kingdom, July 9-12, 2018, pages 61–75. IEEE
Computer Society, 2018.

APSW18. Maxime Audinot, Sophie Pinchinat, François Schwarzentruber, and Florence
Wacheux. Deciding the non-emptiness of attack trees. In Graphical Models for
Security - 5th International Workshop on Graphical Models for Security, Oxford,
UK - July 8, 2018, pages 25–38, 2018.

ÅS19. Oscar Åberg and Edvin Sparf. Validating the meta attack language using mitre
att&ck matrix, 2019.

Aud18. Maxime Audinot. Assisted design and analysis of attack trees. PhD thesis, Université
de Rennes 1, 2018.

BB09. EAC Advisory Board and Standards Board. Election Operations Assessment –
Threat Trees and Matrices and Threat Instance Risk Analyzer (TIRA). 2009.

BK08. Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press,
2008.

BKMS12. Alessandra Bagnato, Barbara Kordy, Per Håkon Meland, and Patrick Schweitzer.
Attribute decoration of attack-defense trees. Int. J. Secur. Softw. Eng., 3(2):1–35,
April 2012.

FFG+16. Marlon Fraile, Margaret Ford, Olga Gadyatskaya, Rajesh Kumar, Mariëlle Stoelinga,
and Rolando Trujillo-Rasua. Using attack-defense trees to analyze threats and coun-
termeasures in an atm: A case study. In Jennifer Horkoff, Manfred A. Jeusfeld, and
Anne Persson, editors, The Practice of Enterprise Modeling, pages 326–334, Cham,
2016. Springer International Publishing.

GJM+17. Olga Gadyatskaya, Ravi Jhawar, Sjouke Mauw, Rolando Trujillo-Rasua, and Tim
A. C. Willemse. Refinement-Aware Generation of Attack Trees. In STM, volume
10547 of LNCS, pages 164–179. Springer, 2017.

HKT13. J. B. Hong, D. S. Kim, and T. Takaoka. Scalable attack representation model using
logic reduction techniques. In 2013 12th IEEE International Conference on Trust,
Security and Privacy in Computing and Communications, pages 404–411, July 2013.

HMU07. John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to automata
theory, languages, and computation, 3rd Edition. Pearson international edition.
Addison-Wesley, 2007.

IPHK15. Marieta Georgieva Ivanova, Christian W. Probst, René Rydhof Hansen, and Florian
Kammüller. Attack Tree Generation by Policy Invalidation. In WISTP, volume 9311
of LNCS, pages 249–259. Springer, 2015.

JLMRC18. Ravi Jhawar, Karim Lounis, Sjouke Mauw, and Yunior Ramírez-Cruz. Semi-
automatically augmenting attack trees using an annotated attack tree library. In In-
ternational Workshop on Security and Trust Management, pages 85–101. Springer,
2018.

Kas66. Tadao Kasami. An efficient recognition and syntax-analysis algorithm for context-
free languages. Coordinated Science Laboratory Report no. R-257, 1966.

MP19. Heiko Mantel and Christian W. Probst. On the meaning and purpose of attack trees.
In 32nd IEEE Computer Security Foundations Symposium, CSF 2019, Hoboken, NJ,
USA, June 25-28, 2019, pages 184–199. IEEE, 2019.

(NE15. National Electric Sector Cybersecurity Organization Resource (NESCOR). Analysis
of Selected Electric Sector High Risk Failure Scenarios, Version 2.0. 2015.

PAV14. Sophie Pinchinat, Mathieu Acher, and Didier Vojtisek. Towards Synthesis of Attack
Trees for Supporting Computer-Aided Risk Analysis. In SEFM Workshops, volume
8938 of LNCS, pages 363–375. Springer, 2014.

PAV15. Sophie Pinchinat, Mathieu Acher, and Didier Vojtisek. ATSyRa: An Integrated En-
vironment for Synthesizing Attack Trees – (Tool Paper). In GraMSec, volume 9390
of LNCS, pages 97–101. Springer, 2015.

PFWT19. Sophie Pinchinat, Barbara Fila, Florence Wacheux, and Yann Thierry-Mieg. Attack
trees: A notion of missing attacks. In Graphical Models for Security - 6th Interna-
tional Workshop, GraMSec@CSF 2019, Hoboken, NJ, USA, June 24, 2019, Revised
Papers, pages 23–49, 2019.

Sch99. Bruce Schneier. Attack Trees: Modeling Security Threats. Dr. Dobb’s Journal of
Software Tools, 24(12):21–29, 1999.

SCPS19. Abdallah Saffidine, Sébastien Lê Cong, Sophie Pinchinat, and François Schwarzen-
truber. The Packed Interval Covering Problem Is NP-complete. CoRR,
abs/1906.03676, 2019.

Sip97. Michael Sipser. Introduction to the Theory of Computation. PWS Publishing Com-
pany, 1997.

Tov84. Craig A. Tovey. A simplified np-complete satisfiability problem. Discrete Applied
Mathematics, 8(1):85 – 89, 1984.

VNN14. Roberto Vigo, Flemming Nielson, and Hanne Riis Nielson. Automated generation
of attack trees. In IEEE 27th Computer Security Foundations Symposium, CSF 2014,
Vienna, Austria, 19-22 July, 2014, pages 337–350, 2014.

WAFP19. Wojciech Wideł, Maxime Audinot, Barbara Fila, and Sophie Pinchinat. Beyond
2014: Formal methods for attack tree-based security modeling. ACM Computing
Surveys, 52(4), 2019. (accepted, to be published).

You67. Daniel H. Younger. Recognition and parsing of context-free languages in time n3.
Information and Control, 10(2):189 – 208, 1967.

A Intractability of Pack Interval Covering

This section is devoted to proving strong NP-completeness of PIC, even under some
restrictions. To do so, we will use a reduction from 2p1n≤3-sat, the restriction of sat
where each variable has exactly two positive occurrences and one negative occurrence,
and where each clause contains no more than 3 literals. Recall that 2p1n≤3-sat is NP-
complete [Tov84, Theorem 2.1]. The problem 2p1n≤3-sat is defined by:

– Input: A finite collection of clauses {C j}1≤ j≤m over variables {pi}0≤i<n, where each
variable pi appears twice as a positive literal and once as a negative literal, and each
clause contains up to 3 literals.

– Output: Is the collection of clauses satisfiable?

As a running example, consider the following.

Example 14. The collection of clauses {(p0∨p1∨p2), (p0∨¬p1∨p3), (¬p0∨p2), (¬p3∨

¬p2), (p1 ∨ p3)} is a positive instance of 2p1n≤3-sat. It can be satisfied by letting p0,
p1, p2 be assigned true, and p3 be assigned false.

We are now equipped to prove our main result.

Theorem 3. The Pack Interval Covering problem (PIC) is strongly NP-complete, even
with all of the following restrictions, all packs have size 2, all intervals have length no
more than 2, and all elements occur in no more than 3 intervals.

Proof. Establishing membership in NP is straightforward. The following polynomial
time non-deterministic algorithm solves PIC: guess an interval in each pack, then verify
in polynomial time that the union of these intervals covers [1,N].

For hardness, assume given {C j}1≤ j≤m an instance of 2p1n≤3-sat, over variables
{pi}0≤i<n. We build an equisatisfiable instance of PIC in polynomial time as follows.

Let N = 2n + m so that the target interval is [1, 2n + m] and define 3 packs for each
variable as follows. For each variable pi, let ci

1 and ci
2 (resp. ci

3) be the indices of the two
clauses (resp. unique clause) where variable pi occurs as a positive literal (resp. negative
literal). The packs corresponding to pi are

Pi
1 ={{2i + 1}; {2n + ci

1}},

Pi
2 ={{2i + 2}; {2n + ci

2}},

Qi ={[2i + 1, 2i + 2]; {2n + ci
3}}.

The intuition behind the construction is that for 0 ≤ i < n, covering [2i + 1, 2i + 2]
ensures that variable pi is assigned no more than one value, while for 1 ≤ j ≤ m,
covering 2n+ j ensure that clause C j is satisfied. Therefore, covering [1,N] ensures that
a variable assignment satisfying all clauses can be found.

The reduction is indeed polynomial since the size of obtained instance of PIC is
linear in the size of the 2p1n≤3-sat instance. The magnitude of the interval bounds is
polynomial in m + n. As such, encoding the integers in unary does not blow up the
size of the resulting instance more than a polynomial factor. Thus the reduction shall

1 2 3 4 5 6 7 8 9 10 11 12 13

p0 p1 p2 p3 C1 C2 C3 C4 C5

P0
1

P0
2

Q0

P1
1

P1
2

Q1

P2
1

P2
2

Q2

P3
1

P3
2

Q3

Fig. 7. The PIC instance associated to the 2p1n≤3-sat instance in Example 14, ie., {(p0 ∨ p1 ∨

p2), (p0 ∨ ¬p1 ∨ p3), (¬p0 ∨ p2), (¬p3 ∨ ¬p2), (p1 ∨ p3)}. A selection corresponding to p0, p1, p2

being assigned true and p3 being assigned false is indicated with square symbols instead of disks.
One can verify that each column contains at least one square, so this selection indeed covers the
target interval [1, 13].

establish strong NP-hardness of PIC. Furthermore, all packs have size 2, all intervals
have length no more than 2, and since each clause contains no more than 3 literals, all
elements occur in no more than 3 intervals.

Example 15 (Example 14 continued). For the collection of clauses of Example 14, we
get N = 2 × 4 + 5 = 13 and the obtained packs can be seen in Figure 7. Each pack
corresponds to a literal occurence in the 2p1n≤3-sat instance (the rows), the interval
[1, 8] is made of pairs corresponding to the variables p0 to p3 (the first 8 columns), and
each integer in the interval [9, 13] corresponds to a clause (the last 5 columns). Just like
the 2p1n≤3-sat instance it is based on, this PIC instance is positve. It can be covered by
selecting the intervals indicated with squares in Figure 7. Each pack contains exactly
one selected (squared) interval, and each column is covered by at least one selected
(squared) interval.

It remains to establish that this reduction is correct: that it maps positive 2p1n≤3-
sat instances to positive PIC instances and that it maps negative 2p1n≤3-sat instances
to negative PIC instances.

First, assume the 2p1n≤3-sat instance is positive and let ν be a valuation that sat-
isfies all clauses of this instance of 2p1n≤3-sat. Let us build a selection of intervals
covering [1,N] in the following way. For any variable pi, its value in ν determines
which intervals we select in packs Pi

1, Pi
2, and Qi. If ν(pi) = true, we select {2n + ci

1},
{2n + ci

2}, and [2i + 1, 2i + 2], otherwise, ν(pi) = false and we select {2i + 1}, {2i + 2}, and
{2n + ci

3}, respectively. We prove that this selection covers every integer in [1, 2n + m]
by examining separately integers in [1, 2n] and integers in [2n + 1, 2n + m].

– Any element y ∈ [1, 2n] can be written as y = 2i+g with i ∈ [0, n−1] and g ∈ [1, 2].
If ν(pi) = true then y is covered by the selection in pack Qi else ν(pi) = false and y
is covered by the selection in pack Pi

g.
– Any element y ∈ [2n + 1, 2n + m] can be written as y = 2n + j with j ∈ [1,m].

Since ν satisfies clause C j, at least of one its literals holds. In other words, there
exists a variable pi such that either ci

1 = j and ν(pi) = true, ci
2 = j and ν(pi) = true,

or ci
3 = j and ν(pi) = false. In the former two cases, y is covered by the selection

in pack Pi
1 or in pack Pi

2 while in the latter case it is covered by the selection in
pack Qi.

Second, assuming that the obtained PIC instance is positive, we show that the orig-
inal 2p1n≤3-sat instance is positive as well. From a solution to the PIC instance, we
derive a valuation ν by letting ν(pi) = true iff [2i + 1, 2i + 2] is selected in pack Qi. To
show that ν satisfies any clause C j, let us identify a literal that holds in it. Since we have
a solution to the PIC instance, the integer 2n + j is covered by the selection. Therefore,
either {2n + j} is selected in Pi

g for some 0 ≤ i < n and g ∈ [1, 2] and literal pi appears
in C j, or {2n + j} is selected in Qi for some 0 ≤ i < n and literal ¬pi appears in C j.
In the former case, consider the integer 2i + g, it cannot be covered with the selection
from pack Pi

g since interval {2n + j} was chosen instead. The only other way to cover
2i + g is to select [2i + 1, 2i + 2] from the variable pack Qi. Thus ν(pi) = true and pi

satisfies clause C j. In the latter case, [2i + 1, 2i + 2] is not selected in pack Qi, therefore
ν(pi) = false and ¬pi satisfies clause C j. In both cases, ν is a model of C j.

	Library-based Attack Tree Synthesis

