
GroDDViewer:
Dynamic Dual View of Android Malware

Jean-François Lalande, Mathieu Simon, and Valérie Viet Triem Tong

CentraleSupélec, Inria, Univ Rennes, CNRS, IRISA, Rennes, France
{firstname.lastname}@inria.fr

Abstract. Understanding an Android malware is a difficult task that
requires strong skills in reverse engineering. Few tools exist except the
well know IDA and Ghidra tools that are more focused on the analysis
of binaries. In the Android world, understanding a malware requires to
analyze the bytecode of the application, possibly obfuscated or hidden
in a benign application that have been modified. At execution time, the
malware can download new payloads, compromise the smartphone, in-
stall new apps. We believe that a security analyst would appreciate to
visualize and replay an execution of an Android malware. In particular,
an analysis that bridge the gap between the bytecode and the events
occurring during the execution would help to understand the malware
behavior. In this article, we propose GroDDViewer the first tool offer-
ing a dual view of the execution of an Android malware. The first view
represents the execution at operating system level through the represen-
tation of all information flows between files, processes and sockets. The
second view represents what happened in the code of the application,
during its execution. The benefit of this visualization tool is illustrated
on a ransomeware sample. Future works concern the evaluation of the
tool with a panel of users on a benchmark of malware samples.

Keywords: malware, visualization

1 Introduction

Security researchers have different goals when working on Android malware anal-
ysis. Faruki et al. have discussed these goals and the associated methodologies [5].
Most of contributions try to decide if an application is a malware or not. Few
works try to address the problem of understanding the behavior of a malware
application. Nevertheless, such an activity is an important task for security an-
alysts of companies or government agencies that are involved in cyber security.
Analyzing and understanding Android malware can have multiple goals. Most
of the time it consists in locating a payload, triggering it, for example if it is
encrypted. By observing the actions of the malware, the analyst should be able
to classify a sample as a locker, RAT, ransomeware, etc. If the application has
been piggybacked [9], the analyst should fin out the malicious code. Then, he has
to understand what the malicious code is doing, when executed, and we believe

that for these tasks, the security analyst need to be helped by tools, especially
visualization tools.

A lot of approaches are based on static analysis but well known contributions
such as CopperDroid [14], CrowDroid [4], DroidScope [19], Harvester [3] have
focused on extracting malware information from an execution. As mentioned
by Faruki et al., such approaches have to face to the difficulty of being sure
that the malware has been successfully executed. Thus, new approaches [1, 6]
focused on the particular problem of helping the execution of malware that wait
for particular conditions to occur.

Nevertheless, all these dynamic approaches focus on how to get data from
an execution (system calls, variable values, network operations, etc.) but not
on how to display the captured data for the security analyst. Most of the time,
online platforms that propose an analysis report give basic textual information
about a sample, like virustotal or Andrubis [18]. Such tools can give aggregate
view of a huge amount of malware samples analyzed, like one million analysis
of Andrubis [10]. Aggregate views are useless for the security analyst that needs
to gain information of a particular sample, especially if this sample is a new
discovered one that have never been analyzed before.

In this article, we propose a new visualization approach, GroDDViewer, for
helping a malware analyst to gain information about the execution of a malware
sample. GroDDViewer gathers a static approach and a dynamic analysis. This
way, GroDDViewer offers a dual view of the execution of the malware: one view
dedicated to the representation of the attack by all the information flows gener-
ated at operating system level between processes, files and sockets and a second
view dedicated to the representation of the executed malicious code. These two
views can be manipulated by the analyst and can focus on precise intervals of
time. Additionally, GroDDViewer offers a replay feature to animate the two
views and see the malware operating and executing itself. GroDDViewer is im-
plemented as a webpage in order to be easily accessible from any platform in a
web browser.

The rest of the article is structured as follows. Section 2 presents the ap-
proaches related to the visualization of Android malware. Section 3 briefly ex-
plains how are collected the data from a malware execution before moving on
Section 4 that presents the visualization interface of GroDDViewer. We illustrate
our tool on a real malware use case in Section 5. Finally, Section 6 concludes
the paper.

2 Related works

Visualizing malware can rely on static or dynamic approaches. Previous works
use static analysis to extract malware features that can be used to classify,
browse malware families or study one particular malware [16]. On the contrary,
few papers focus on the visualization of dynamic analysis. This is surprising, as
malware analysts need to collect information from executions, for example API

and kernels calls [17]. A complementary approach is to monitor the network
during an analysis, which can give good insight of malware activities [20].

We found several approaches that focus on the analysis of one single malware
and capture dynamic data and propose visualization results that have similarities
with our approach. Trinius et al. [15] propose to use treemaps to visualize system
calls and treegraphs to represents the system commands during the time of
execution. This work is similar to our approach as is a sort of dual view of a
malware (system and command levels) with a dynamic view that helps the user
to get what is happening over time. Another work that have similar ideas is
the paper of Grégio et al. [7] that represent system calls using a Jung graph.
In [13], Quist et al. introduce the visualization of the control flow of the program
for executable malware. This approach produces very large graphs but helps to
isolate loops, and especially unpacking stages which is of primary interest for x86
malware. Compared to our approach, we intend to use the control flow graph to
link observations to the reversed source code of the malware. Thus, we need to
have more readability on such kind of representation.

Visual analysis can be used to classify or recognize malware. In [11], authors
use visual similarities of malware’s image to discover relationships between mal-
ware. In [12], a graphical overview of the similarities of Android malware’s code
help to identity the shell code shared by different malware samples. These ap-
proaches have a different goal because they help to understand the evolution of
a family of malware or multiple samples.

When dealing with a unique malware, well known online platforms give very
basic information, mainly in a text based way. The most developed source of
information are the blogs web pages that give precise insight for a particular
sample. Such analysts use virtualized emulators or real smartphones to execute
the malware and can be helped by uncompilers or debuggers like the well known
IDA software. Nevertheless, such tools have no advanced display capabilities
when a malware operates million of system calls, creates hundreds of files and
have thousands of Java classes to understand. The particular nature of Android
applications and the way the malware are implemented, as a repackaged benign
application where malicious code has been added, pushed us to develop a new
visualization interface.

Additionally, all the cited approaches are related to the visualization of x86
malware and do not focus on the particularities of Android malware (except
for Paturi et al. [12]). Thus, we believe that this paper is the first to propose
a visualization for Android malware combining the view of the code and the
operating system events captured during an execution.

3 Material collection

GroDDViewer gathers static and dynamic analysis in order to offer a represen-
tation of the attack itself and the malicious code that has been executed during
the attack.

First the malicious behavior is captured by AndroBlare [2], that monitors
flows of information at operating system level. AndroBlare intercepts system calls
responsible of information flows between files, sockets or processes which enable
to observe the malware from the operating system point of view. AndroBlare
relies on tainting techniques : the malware APK file is tainted with a mark and
each process or object of the system can obtain the mark if a system call generates
an information flow from a marked process/object. During the execution, all the
interactions that happened between the process created from the APK file and
the system are collected in a log. These interactions are process creation, file
creation, socket interactions. We also collect the state of the user files before and
after an execution in order to be able to show what happened to the files.

The attack is triggered by GroddDroid 2 [1] a framework that detects suspi-
cious code and controls multiple executions of a malware in order to force the
execution of code identified as suspicious. GroddDroid 2 instruments the byte-
code to be able to trace the execution of all branches of the control flow. Then,
it executes and stimulates the malware in a real smartphone and audits the ex-
ecuted branches. If the suspicious code is not reached, GroddDroid 2 changes
branch conditions in order to push the execution towards the malicious code.
During such multiple executions, we collect the name and the time of the exe-
cuted branches in order to be able to give a representation of the executed code
at method level, as described later in Section 4.

4 Visualizing malware execution

4.1 Overview

GroDDViewer offers a dual view of a malware execution: a view of all the in-
formation flows at operating system level and a view of the executed malicious
bytecode. As shown in Figure 1 and 2, four main components explain the mal-
ware execution:

1. System Flow Graph: represents all the information flows induced by the
malware execution that occurred at system level;

2. Interactions frequency: represents the number of information flow events
over time;

3. Method Control Flow and Bytecode View: represents the control flow
of method calls.

4. User interface navigation: represents what is seen from the user perspec-
tive, if any, and the events to go from one screen to another one.

Dynamic interactions of the user with these graphical elements provide addi-
tional information. For example, the user can click to get additional information
such as a file modification or the bytecode source. The selection of time inter-
vals provides a zoom capability on a specific period of time. The replay feature
animates the graphs in order to replay events at operating system and bytecode
levels. All these features are described in the next sections.

Fig. 1. Overview of GroDDViewer (part 1)

Fig. 2. Overview of GroDDViewer (part 2)

4.2 System Flow Graph

Information flows between objects of the operating system represent how the
malware contaminates the operating system from the APK file (upper part of
Figure 1). Each edge of the graph may appear multiple times as system calls can
be triggered often by the process, for example when writing a file. We record the
timestamps of each occurrence which enables to replay the interactions.

A node of the graph can be a process, a socket, or a file. When clicking on a
file, the difference of content is displayed between the initial state and final state
of the experiment, if the file is a text file. It allows to follow the content modified
or created by a malware. If the malware just read information, the edges show
a transition from the file to a process.

The toolbar provides additional functionalities to manipulate the System
Flow Graph. First, additional nodes can be displayed. The Full graph option
shows the possible duplicate process nodes. It corresponds to the execution of
multiple independent processes that have the same name. The System Server
graph option shows the subgraph of the System Server process and all con-
nected other processes that have been contaminated by the mark through System

Server. As System Server is the central process that delivers Android Services
and may asks to other Android process some data, the size of this subgraph can
be very large if the malware accesses frequently the Android API. Thus, masking
this part of the graph helps to visualize the processes that are accessed by the
malware but it may be necessary to reactivate it to learn what the malware tries
to access. Second, nodes that have similar extensions can be grouped. It allows
to reduce the graph when a malware generates a lot of similar files, for example
writes log files or accesses multiple sockets.

Finally, the layout of the processes can be controlled using the Grid Layout
option. It forces the placement of all, higher or a custom number of processes on
a grid. This tool helps to browse the graph when the number of nodes is large.

4.3 Interactions frequency

In bottom part of Figure 1, a frequency graph displays the number of events
occurring for information flows at kernel level. Because a simple Java operation
can generate a large number of system calls, the number of flows in few millisec-
onds can be very high. Thus, we discretize the time of experiments in an interval
[0, 1000] and we display the number of events on a logarithmic y axis.

The interaction frequency graph also intends to be used for zooming on a
precise time interval. Indeed, some malware actions can be concentrated in a
particular portion of time: the user selects a new time interval in [0, 1000] on the
upperpart of the interaction frequency graph. A new selection of an interval [x, y]
has two effects. First, the lower orange graph is updated accordingly. Second, the
System Flow graph is updated to display the processes, files and sockets involved
during [x, y]. This functionality is particularly useful for understanding what the
malware is doing on a particular period of time, or where the user shows a pick
of activity on the Interaction frequency graph.

4.4 Control flow and bytecode views

The dual view of the System Flow Graph is the Method call graph that represents
the control flow between methods. We could have displayed the entire control
flow, i.e. by representing the control flow of the inside of a method, but the
graph would have become difficult to understand. Thus, we define the nodes as
methods and the edges represents explicit calls of methods. This way, we obtain
a graphic representation of the code of the malware, where each node can be
clicked to display the bytecode source. A path, in such a graph, is a possible
nested suite of method calls until a return statement unstack the last call.

As shown in Figure 2, in order to help the user to browse the graph, we give
the possibility to fold/unfold the methods (blue nodes) by packages (orange) and
classes (pink). Suspicious classes have a red border and help the user to focus on
suspicious methods. Each node of the call graph can be clicked. GroDDViewer
displays the bytecode in a popup window, as shown in Figure 3. This way, the
user can analyze the suspicious bytecode and follow the malware developer logic.

Fig. 3. Bytecode visualization

Fig. 4. Automaton of the navigated screens

4.5 User interface navigation

GroDDViewer also displays the different screens of the application that appeared
during an execution, as shown in Figure ??. These screenshots are represented
as automaton where transition are labeled with the simulated user interaction.

4.6 Dynamic replay

As the collected data come from an execution of the malware, we also record
the timestamps associated to all events: the dates of the observed flows of the
System Flow Graph and the dates of the branches of the control flow graph of
the bytecode. The collected timestamps are extracted from the kernel (for the
System Flow Graph) or from the Android logcat command when the malware
bytecode is executed. Thus, we have to synchronize the two sources of timestamp
to be able to replay events with a precision acceptable from the user perspective.

The Replay feature, located in the Time tools group of the toolbar, replay
all events in a dual manner: the System Flow Graph events are animated syn-
chronously with the Method Control Flow graph. This animation helps to see
simultaneously the operation at system level, for exemple file creation or socket
communication, while the methods of the bytecode are called. It helps to iden-
tify the nature of the methods from the nature of the performed action in the
system, as illustrated in the use case in Section 5.

5 Use case
We have chosen to study a ransomware called SimpleLocker1 from the Kharon
dataset [8] to present an example of use case of GroDDViewer. SimpleLocker is
a ransomware that encrypts the user files before asking for a ransom to the user.
If the user pays the ransom, the attacker may trigger the unencryption process
using the Tor network.

5.1 Static analysis
When displaying the GroDDViewer page for the SimpleLocker malware, several
things can be noted. First, the System Flow Graph contains several processes.
When excluding the Android processes like m.android.phone or servicemanager,
two processes can be noted: tor and libprivoxy.so. It is uncommon to have more
than one process for a benign Android application. Multiple processes reveal that
the malware have launched another application or a native library. In particular,
the graph shows a file torrc that is wrote by the process org.SimpleLocker and
read by the tor process. Then tor connects to several IPs. We can easily suspect
that this malware tries to communicate with the attacker using the Tor network.

Second, the Method Control Flow and Bytecode View gives an overview of
the code. Two entry points (green) are identified: onCreate, the standard way
of creating an Android Activity and onStartCommand which is used to start
an Android Service. Nine methods have been identified as suspicious (red). One
of the most interesting is doShellCommands which name is highly suspicious.
Clicking this method shows the bytecode. The user can view how the code tries
to run shell commands using java.lang.Runtime. All other suspicious methods
can be inspected but we already know that they have been flagged as suspicious
(high score) due to API calls such as encryption, telephony, etc. Other displayed
intermediate nodes (blue) participate to the paths of calls to reach the suspicious
nodes. Finally, clusters of nodes can be expanded: sink clusters give access to
subcalls of the suspicious nodes. Expanding the parallel clusters shows nodes
that are in other packages. For example, the package org.spongycastle which is a
repackaged version of an encryption library (The Legion of the Bouncy Castle).
Nevertheless, as these nodes are in the parallel cluster, it seems that the malware
does no use this library, which is confirmed by the dynamic analysis.
1 The visualization of SimpleLocker using GroDDViewer is available at:

http://kharon.gforge.inria.fr/dataset/SimpLocker_sample_
fd694cf5ca1dd4967ad6e8c67241114c.html

http://kharon.gforge.inria.fr/dataset/SimpLocker_sample_fd694cf5ca1dd4967ad6e8c67241114c.html
http://kharon.gforge.inria.fr/dataset/SimpLocker_sample_fd694cf5ca1dd4967ad6e8c67241114c.html

5.2 Dynamic analysis

Using the replay capability of GroDDViewer gives an insight about the malware
actions. The Interaction frequency graph shows a lot of interactions on the in-
terval [0, 100]. When replaying, this first part corresponds to Android routines
and are not linked with the malware execution that starts later. SimpleLocker
starts at time t = 250: after being unpacked from the .apk file, it deploys local
files like torrc and privoxy.config. Then, a long interaction is observed at time
t = 258 with a file ending by .enc. This means that some long operations are
running for this file. At timestamp 960, operations are finished on this file. At
the end of the replay, we also see some interations between the tor process and
some IPs.

This first dynamic overview suggests to focus on the interval t > 240. Thus,
the user can use the zoom functionality to put the replay window on t ∈
[240, 1000].

Then, the dynamic replay of Method Control Flow graph shows a sequence
of calls onCreate → run → encrypt at times t near 250. It corresponds to
the generation of the encrypted file .enc after starting the main activity of
the application. Indeed, if the user inspects the executed encrypt method, as
shown in Figure 3, the first lines of the bytecode shows the code $r1 = new
org.SimpleLocker.AesCrypt followed by specialinvoke $r1.(”jndlasf074hr”) which
corresponds to the call to the constructor of the used AES encryption algorithm
with a constant encryption key. When opening the other animated nodes such
as findExistingProc, findProcessIdWithPidOf, the user may think that it corre-
sponds to the control of the Tor process for handling communication, which is
less interesting to investigate.

Thus, the replay shows the encryption occurring at time t > 250 with the
AES algorithm with a constant key. Unfortunately, as the communication is
handled by a native independent process, we cannot inspect using the Method
Control Flow graph the details of the execution of the communication protocol.

6 Conclusion

In this paper, we have presented GroDDViewer, an online tool for analyzing,
understanding and replaying Android malware. GroDDViewer presents a dual
view of malware: the graph of interactions that represents the operations that
occured at operating system level and the graph of the methods of the bytecode.
The presented use case illustrates how the user can easily gain some knowledge
on the execution of a malware. Of course, such a tool cannot replace a manual
investigation of the details of the bytecode but ease the understanding of the
malware behavior. Future works concern the evaluation of the tool on a large
panel of Android malware. Security analysts that conduct regular analysis of new
samples will be involved in a campaign with two groups: one using GroDDViewer
and not the other. Such a study will help to evaluate finely the obtained benefits.

References
1. Abraham, A., Andriatsimandefitra, R., Brunelat, A., Lalande, J.F., Viet

Triem Tong, V.: GroddDroid: a Gorilla for Triggering Malicious Behav-
iors. In: 10th International Conference on Malicious and Unwanted Soft-
ware. pp. 119–127. IEEE Computer Society, Fajardo, Puerto Rico (oct 2015).
https://doi.org/10.1109/MALWARE.2015.7413692

2. Andriatsimandefitra, R., Tong, V.V.T.: Capturing Android Malware Behaviour
Using System Flow Graph. In: The 8th International Conference on Network and
System Security. pp. 534–541. Springer Berlin / Heidelberg, Xi’an, China (oct
2014). https://doi.org/10.1007/978-3-319-11698-3_43

3. Bodden, E.: Harvesting Runtime Values in Android Applications that feature Anti-
Analysis Techniques. In: Network and Distributed System Security Symposium. pp.
21–24. No. February (2016)

4. Burguera, I., Zurutuza, U., Nadjm-Tehrani, S.: Crowdroid: Behavior-Based Mal-
ware Detection System for Android. In: 1st ACM workshop on Security and privacy
in smartphones and mobile devices. p. 15. ACM Press, Chicago, USA (oct 2011).
https://doi.org/10.1145/2046614.2046619

5. Faruki, P., Bharmal, A., Laxmi, V., Ganmoor, V., Gaur, M.S., Conti, M., Ra-
jarajan, M.: Android Security: A Survey of Issues, Malware Penetration and
Defenses. IEEE Communications Surveys & Tutorials PP(99), 1–27 (2015).
https://doi.org/10.1109/COMST.2014.2386139

6. Fratantonio, Y., Bianchi, A., Robertson, W., Kirda, E., Kruegel, C., Vigna, G.:
TriggerScope: Towards Detecting Logic Bombs in Android Applications. Ieee S&P
pp. 1–33 (2016). https://doi.org/10.1109/SP.2016.30

7. Grégio, A.R.a., Santos, R.D.C.: Visualization techniques for malware behav-
ior analysis. Communications, and Intelligence (C3I) Technologies for Home-
land Security and Homeland Defense X 8019, 801905–801905–9 (2011).
https://doi.org/10.1117/12.883441

8. Kiss, N., Lalande, J.F., Leslous, M., Viet Triem Tong, V.: Kharon dataset: An-
droid malware under a microscope. In: The Learning from Authoritative Security
Experiment Results Workshop. The USENIX Association, San Jose, United States
(may 2016)

9. Li, L., Li, D., Bissyande, T.F., Klein, J., Le Traon, Y., Lo, D., Cavallaro, L.:
Understanding Android App Piggybacking: A Systematic Study of Malicious Code
Grafting. IEEE Transactions on Information Forensics and Security 12(6), 1269–
1284 (jun 2017). https://doi.org/10.1109/TIFS.2017.2656460

10. Lindorfer, M., Neugschwandtner, M.: ANDRUBIS-1,000,000 Apps Later: A View
on Current Android Malware Behaviors. In: 3rd International Workshop on Build-
ing Analysis Datasets and Gathering Experience Returns for Security. IEEE Com-
puter Society, San Jose, CA, USA (sep 2014)

11. Long, A., Saxe, J., Gove, R.: Detecting Malware Samples with Similar Image Sets.
The Eleventh Workshop on Visualization for Cyber Security pp. 88–95 (2014).
https://doi.org/10.1145/2671491.2671500

12. Paturi, A., Cherukuri, M., Donahue, J., Mukkamala, S.: Mobile malware visual
analytics and similarities of Attack Toolkits (Malware gene analysis). In: 2013
International Conference on Collaboration Technologies and Systems (CTS). pp.
149–154. IEEE (may 2013)

13. Quist, D.A., Liebrock, L.M.: Visualizing compiled executables for malware analysis.
In: 2009 6th International Workshop on Visualization for Cyber Security. pp. 27–
32. IEEE (2009)

https://doi.org/10.1109/MALWARE.2015.7413692
https://doi.org/10.1007/978-3-319-11698-3_43
https://doi.org/10.1145/2046614.2046619
https://doi.org/10.1109/COMST.2014.2386139
https://doi.org/10.1109/SP.2016.30
https://doi.org/10.1117/12.883441
https://doi.org/10.1109/TIFS.2017.2656460
https://doi.org/10.1145/2671491.2671500

14. Tam, K., Khan, S., Fattori, A., Cavallaro, L.: CopperDroid: Automatic Recon-
struction of Android Malware Behaviors. In: 22nd Annual Network and Distributed
System Security Symposium. San Diego, California, USA (feb 2015)

15. Trinius, P., Holz, T., Gobel, J., Freiling, F.C.: Visual analysis of mal-
ware behavior using treemaps and thread graphs. In: 2009 6th Interna-
tional Workshop on Visualization for Cyber Security. pp. 33–38. IEEE (2009).
https://doi.org/10.1109/VIZSEC.2009.5375540

16. Wagner, M., Fischer, F., Luh, R., Haberson, A., Rind, A., Keim, D.A., Aigner,
W.: A Survey of Visualization Systems for Malware Analysis. EuroVis (2015).
https://doi.org/10.2312/eurovisstar.20151114

17. Wagner, M., Aigner, W., Rind, A., Dornhackl, H., Kadletz, K., Luh, R.,
Tavolato, P.: Problem Characterization and Abstraction for Visual An-
alytics in Behavior-based Malware Pattern Analysis. Proceedings of the
Eleventh Workshop on Visualization for Cyber Security pp. 9–16 (2014).
https://doi.org/10.1145/2671491.2671498

18. Weichselbaum, L.: Andrubis: Android Malware Under The Magnifying Glass. Tech.
rep. (2014)

19. Yan, L.K., Yin, H.: DroidScope: seamlessly reconstructing the OS and Dalvik se-
mantic views for dynamic Android malware analysis. In: USENIX Security Sym-
posium. p. 29. USENIX Association (aug 2012)

20. Zhuo, W., Nadjin, Y.: MalwareVis: Entity-based Visualization of Malware Net-
work Traces. In: The Ninth International Symposium on Visualization for Cy-
ber Security. pp. 41–47. ACM Press, New York, New York, USA (2012).
https://doi.org/10.1145/2379690.2379696

https://doi.org/10.1109/VIZSEC.2009.5375540
https://doi.org/10.2312/eurovisstar.20151114
https://doi.org/10.1145/2671491.2671498
https://doi.org/10.1145/2379690.2379696

	GroDDViewer: Dynamic Dual View of Android Malware

