
Security Analysis of IoT systems using Attack
Trees

Delphine Beaulaton1, Najah Ben Said3, Ioana Cristescu2, and Salah Sadou1

1 Univ. South Brittany, Irisa - France
2 INRIA - France

3 Thales SIX-GTS - Palaiseau

Abstract. Attack trees are graphical representations of the different
scenarios that can lead to a security failure. In combination with model
checking, attack trees are useful to quantitatively analyse the security
of a system. Such analysis can help in the design phase of a system
to decide how and where to modify the system in order to meet some
security specifications.
In this paper we propose a security-based framework for modeling IoT
systems where attack trees are defined alongside the model. A malicious
entity uses the attack tree to exploit the vulnerabilities of the system.
Successful attacks can be rare events in the system’s execution, in which
case they are hard to detect with usual model checking techniques. Hence,
we use importance splitting as a statistical model checking technique for
rare events. This technique requires a decomposition of an attack into sub
parts, similarly to an attack tree. We argue that therefore, importance
splitting is well suited, and benefits, from our modeling framework. We
implemented our approach in a tool-set and verified its effectiveness by
running a set of experiments over a real-word example.

1 Introduction

The Internet of Things (IoT) is a rapidly emerging paradigm that provides a
practical and easier way for users to manage and control a large variety of ob-
jects interacting over the Internet. However, IoT systems involve heterogeneous
devices that are connected to a shared network and that carry critical tasks,
and hence, are targets for malicious users. Vulnerabilities are discovered in op-
portunistic manner since security has mostly an ad-hoc treatment. Therefore,
developing a systematic mechanism that considers security aspects at an early
stage of system design helps detecting and preventing attacks.

Formal security analysis usually target systems with well-defined properties
and specific implementation. For IoT systems, we have to find an appropriate
abstraction level that is applicable to different implementations. Security issues
can occur at different levels in a system, for example in the computation nodes,
in the communication protocols or at the storage level. Attack trees [12, 15]
are intuitive and practical formal methods to identify and analyze attacks. As
their name suggests, attacks are modeled as trees, where the leaves represent

elementary steps needed for the attack, and the root represents a successful
attack. The internal nodes are of two types, indicating whether all the sub-goals
(an AND node) or one of the sub-goals (an OR node) must be achieved in order
to accomplish the main goal. Moreover, attack trees can express security issues
of different nature in an uniform way. Hence, combining both formal analysis
and attack trees helps to track and monitor the entire system in order to detect
security breaches.

In this paper we present a framework to formally model IoT systems and
analyse them using attack trees. In the formal modeling language we introduce,
IoT systems are represented as a set of entities that communicate with each other
if some verification on their identity holds. A malicious entity, called the Attacker,
is explicitly represented in the system. The rest of the entities in the system
may inadvertently help the Attacker by leaking their sensitive data. Equipped
with the acquired knowledge the Attacker can then intrude the victim entities.
Therefore, the system’s vulnerabilities are also explicit in the model, and are
represented by leaks.

We also propose a correct-by-construction transformation of an IoT model
into a stochastic component-based model, called SBIP [2, 4], for which an ex-
ecution engine is developed and maintained. We can therefore execute our IoT
model and run several verification and analysis tests, such as deadlock detection.
Moreover, the attack tree provided with the model is transformed into a moni-
tor that observes the interactions the Attacker has with the system and analyse
when an attack is successful.

We then ask what is the probability of a successful attack given an IoT
system and an attack tree. To respond to this question, we use two methods of
statistical model checking (SMC) [4]: Monte Carlo, a standard SMC method,
and importance splitting [9]. The Monte Carlo method consists of sampling the
executions of an IoT system and computing the probability of an attack based
on the number of executions for which the attack was successful. A successful
attack can be considered a rare event if its probability value is in the range of
10−5 or 10−6. For rare events, the Monte Carlo method can be problematic as it
requires a large number of simulations for a correct estimate. We therefore use a
second SMC method, developed for rare events, called importance splitting [9].
Importance splitting assumes that an execution leading to a rare event can be
decomposed into several intermediate steps. Instead of executing a system until
the rare event occurs, the execution is stopped after one of the intermediate
steps is reached. The execution is restarted then from that step onward. Not
only importance splitting can infer the probability of a rare event but it is also
well suited for attack trees. The intermediate steps leading to a rare event are
deduced from the nodes in the tree leading to a successful attack.

We implemented a tool chain to automate the analysis presented above. It
consists of a compiler from our IoT modeling language into SBIP. The execution
engine of SBIP is then used to produce simulations of the system, which are
then fed to Plasma [5], a model checker that implements both Monte Carlo and
importance splitting. Throughout our paper, we use a running example involving

cyber-attacks on a Smart Hospital. The example is based on existing attacks
carried against hospitals IT system as reported by TrapX [1] and ENISA [6].

The paper is structured as follows. Section 2 presents the IoT modeling lan-
guage, Section 3 introduces attack trees and Section 4 presents SBIP. The trans-
formation from IoT to SBIP is shown in Section 5. Section 6 presents the two
SMC techniques. In Section 7 we validate our approach using some experiments
on the running example. Related works that we are aware of, are summarised
and compared with our work in section 8. Lastly, Section 9 concludes.

2 Probabilistic IoT Models

The components of an IoT system, called entities, have each a knowledge, used
to allow (or disallow) its interaction with the rest of the system. For instance,
an entity can send an email to another entity only if it knows its email address.
Or an user needs to know the url of a website in order to access it; we say that
the url is part of the user’s knowledge. For simplicity, we represent knowledge
as a finite set of values.

Protocols are used at each interaction to verify the knowledge of the interact-
ing entities. Each value is associated to a protocol. Two entities can communicate
through a protocol if they have a common value for that protocol. We write C
for a set of protocols, ranged over by c and Val for a set of values ranged over
by v.

2.1 Processes and States

Each entity has a unique identifier, denoted by e1, · · · en and a running process.
The grammar of processes is defined in Figure 1.

Process P,Q ::= T || P | Q

Thread T,U ::= 0 || A ||
∑
i∈I

[ni]ai.Ti where ni ∈ (0, 1] and
∑
i∈I

ni = 1

Action a, b ::=e
c−→
v
e′ (Send) || e c←− e′ (Receive) ||

e −−−�
v

e′ (Leak)|| e� e′ (Collect) ||

τ (Internal)

Definition A
def
= T

State s ::=∅ || 〈P, k〉 || s | s.

Fig. 1: Syntax of the probabilistic IoT-calculus

Processes are composed of threads, using the parallel composition operator.
A thread can only do sequential computations. We write 0 for the inactive thread
and A for the (recursive) definitions of threads.

The actions of a thread consists of sending and receiving values under an
agreed upon protocol. We distinguish between ”safe” interactions and the ones
that can potentially lead to security issues, called leak and collect. A leak is a
send action where there is no protocol governing the interaction and collect is its
receive counterpart. Processes can also do silent moves, denoted by τ . Moreover,
actions are equipped with a probability, denoted by [n]a, for an action a and a
probability n ∈ [0, 1]. Threads can therefore do a probabilistic choice between
actions, with the restriction that the sum of the probabilities of all available
actions is 1. If there is only one available action, its probability is 1 and can be
omitted.

A knowledge function K : E × C → P(Val) associates a set of values to
each entity and protocol. For simplicity we write kci for the knowledge of entity
i under protocol c. The function protocol : Val → C associates each value to a
protocol.

Each entity, has at any state of its computation, a running process P and a
knowledge k. The grammar for states is included in Figure 1. The global state of
a IoT system consists of the parallel composition of all entities states s1 | · · · | sn,
where si is the current state of the entity ei.

2.2 Operational semantics

We define ≡P⊆ P ×P to be the smallest congruence on processes which includes
the associativity and the commutativity for + and |; the identity element 0 for

| and the unfolding law for definitions: A ≡P T if A
def
= T . We also introduce a

congruence relation on states ≡s⊆ s×s which includes the associativity and the
commutativity for |, the identity element ∅ and which generalizes the congruence
on processes: if P ≡P Q then 〈P, k〉 ≡s 〈Q, k〉.

The operational semantics of Figure 2, defines a transition system (S, T, L, s0)
where we write S for the set of states, with s0 the initial state, L ⊆ {τ} ∪
({SR, LC}×Val) for a set of labels, ranged over by l, and T ⊆ S× [0, 1]×L×S
for a set of transitions, where each transition is decorated by a probability and
by a label. A transition can either be internal, labeled by τ , or it can be an
interaction between two entities exchanging a value.

In our semantics, a probabilistic choice is always resolved locally, using the
Choice rule. A transition derived by the Choice rule is considered internal and
is labeled τ . A process can also do internal transitions using rule Internal. Rule
SendReceive defines the interaction between two components e1 and e2. The
interaction is allowed if the sender and the receiver share some common values
under the protocol c. After the interaction, the receiver’s knowledge is updated
by adding the received value under the corresponding protocol. A LeakCollect
interaction proceeds similarly, except that there are no checks on the knowledge
of the two components. Rules Congruence and ParProc allows one to use
congruence and parallel composition on states to derive transitions.

Choice Internal

〈
∑
i∈I

[ni]ai.Ti, k〉
[ni]−→
τ
〈ai.Ti, k〉 〈τ.P, k〉 [1]−→

τ
〈P, k〉

SendReceive

∃v ∈ kc1 s.t. v ∈ kc2 c′ = protocol(v′)

〈e1
c−→
v’

e2.P1, k1〉|〈e2
c←− e1.P2, k2〉

[1]−→
SR:v′

〈P1, k1〉|〈P2, k
c′
2] {v′}〉

LeakCollect

c′ = protocol(v′)

〈e1 −−−�
v’

e2.P1, k1〉|〈e2 � e1.P2, k2〉
[1]−→

LC:v′
〈P1, k1〉|〈P2, k

c′
2] {v′}〉

ParProc Congruence

〈Pi, ki〉|〈Pj , kj〉
[n]−→
l
〈P ′i , k′i〉|〈P ′j , k′j〉

〈Pi | Qi, ki〉|〈Pj | Qj , kj〉
[n]−→
l
〈P ′i | Qi, k′i〉|〈P ′j | Qj , k′j〉

s ≡s t
[n]−→
l
s′ ≡s t′

s
[n]−→
l
s′

ParState Tau
〈P, k〉 [n]−→

τ
〈P ′, k′〉 countτ (〈P, k〉|s) = m

〈P, k〉|s [1/m·n]−→
τ
〈P ′, k′〉|s

ParState Interaction

〈Pi, ki〉|〈Pj , kj〉
[1]−→
l
〈P ′i , k′i〉|〈P ′j , k′j〉 countSR,LC(〈Pi, ki〉|〈Pj , kj〉|s) = m

countτ (〈Pi, ki〉|〈Pj , kj〉|s) = 0

〈Pi, ki〉|〈Pj , kj〉|s
[1/m]−→
l
〈P ′i , k′i〉|〈P ′j , k′j〉|s

Fig. 2: The operational semantics of an IoT system

The rules for the global states, ParState Tau and ParState Interaction,
give priority to the internal transitions over the binary interactions. Moreover, in
each case, we choose a global transition from several local ones using an uniform
distribution. We rely on two auxiliary functions, countτ and countSR,LC that count
the number of local transitions with labels τ and labels SR, LC, respectively.

Definition 1. Given an IoT model (S, T, L, s0) with an initial state s0, an exe-

cution is a sequence of transitions in T , σ = {si
[ni]−→
li

s′i}0≤i≤k, such that s0 = s

and ∀i ≥ 1, s′i−1 = si. The probability of a transition s
[n]−→
l

s′ is n and the

probability of an execution σ is
∏

0≤i≤k ni.

Example 1. Let us now introduce our running example, the Smart Hospital sys-
tem. Let E = {A(ttacker),H (ospital),E (mployee)} be three entities which com-
municate with each other using the protocols C = {url , message, mail , phone}.
We introduce the following actions:

AH =A
url−−−−−−−−−−→

getSensitiveData
H leakEmail =H −−−−−−−−−−−�

emailEmployee
A

HA =H
url←−− A leakPhone =H −−−−−−−−−−−−�

phoneEmployee
A

AE mail =A
mail−−−−−−−−→

getCredential
E leakIssue =H −−−−−−−−−−−�

issueEmployee
A

EA mail =E
mail←−−− A leakCredentials =E −−−−−−−−−−−�

credEmployee
A

AE phone =A
phone−−−−−−−−→

getCredential
E

EA phone =E
phone←−−−− A

and process definitions:

Attacker =AChoice | collectH | collectE

AChoice =[0.4]AH.AChoice + [0.3]AE mail.AChoice + [0.3]AE phone.AChoice

collectH =A � H .collectH

collectE =A � E .collectE

Hospital =HA.([n1]leakPhone.Hospital + [n2]leakIssue.Hospital+

[n3]leakEmail.Hospital + [n4]τ.Hospital)

Employee =[m1]EA mail.EChoice + [m2]EA phone.EChoice

EChoice =[m3]leakCredentials.Employee + [m4]τ.Employee

A has Attacker as initial process and similarly for H and E . Their initial knowl-
edge is:

kA ={url = {urlHospital},message = {getSensitiveData, getCredentials}}
kH ={url = {urlHospital},mail = {emailEmployee}, phone = {phoneEmployee}}
kE ={mail = {emailEmployee}, phone = {phoneEmployee}}

where the missing protocols are initially the emptysets.
Let us now consider the transitions below. The Attacker starts by choosing to

contact the Hospital using the internal transition (1), after which the two entities
can communicate in transition (2). At this point the Hospital can either leak
some sensitive information (emailEmployee, phoneEmployee or issueEmployee)
or it can do an internal transition. Transitions (3) − (4) represent the scenario
where emailEmployee is leaked. The knowledge of the attacker is augmented with
the leaked data: kmail

A ∪{emailEmployee} and the attacker can now communicate
with the employee using the email protocol.

〈Attacker, kA〉 | 〈Hospital, kH〉
[0.4]−→
τ

(1)

〈AH.AChoice | collectH | collectE, kA〉 | 〈Hospital, kH〉
[1]−−−−−−−−−−−−−→

SR:getSensitiveData
(2)

〈Attacker, kA〉 | 〈[n3]leakEmail.Hospital + · · · , k′H〉
[n3]−→
τ

(3)

〈Attacker, kA〉 | 〈leakEmail.Hospital, k′H〉
[1]−−−−−−−−−−−−→

LC:emailEmployee
(4)

〈Attacker, k′A〉 | 〈Hospital, k′H〉

Suppose that after transition (2), the Hospital does not leak any information:

〈Attacker, kA〉 | 〈[n3]leakEmail.Hospital + · · · , k′H〉
[n4]−→
τ

〈Attacker, kA〉 | 〈Hospital, k′H〉.

Then the Attacker cannot communicate with the Employee. If the Attacker tries
to communicate without knowing the emailEmployee, the system deadlocks. A
sequence of transitions ending with a deadlock represents an unsuccessful attack.

3 Attack Trees

In this section we formally introduce attack trees and we show how attack trees
can be used to monitor the execution of an IoT system.

Figure 3 shows an attack tree for the Smart Hospital in Example 1. The
root of the tree is the main goal of the Attacker, which is getting the Employee’s
credentials. The nodes represent the possible attacks. For example the qui pro quo
attack consists of contacting the Employee and posing as a technician. For this
attack, node get information has to happen as well. It requires for the Attacker
to get the Employee’s phone number and technical issue, which both are leaked
by the Hospital. The second possibility is a phishing attack. It consists of the
Attacker contacting the Hospital and then the Hospital leaking the Employee’s
email. If either of the two attacks succeed, the Attacker can then try to get the
Employee’s credentials.

Fig. 3: An attack tree for the Smart Hospital

Formally, the leaves of the tree corresponds to events happening in the sys-
tem. An event in an IoT system consists of the exchange of a value between some
entities. For example, the node Employee leaks credentials stands for the pair
(LC, ”credEmployee”), meaning that the value credEmployee has been leaked,
through a LeakCollect interaction.

Definition 2. Let ∆ ⊆ {SR,LC} ×Val be a set of events. An attack tree t is a
term constructed recursively from the set ∆ using the operators ∨ and ∧.

An attack tree can also be seen as a Boolean expression, by associating to
every event e ∈ ∆ a Boolean variable ve.

Definition 3. Let t be an attack tree. The semantics of t, denoted [[t]], consists
of a Boolean expression defined by recursion on t as follows:

– if e ∈ ∆ then [[t]] = ve;
– if t = t1 ∧ t2 then [[t]] = [[t1]] ∧ [[t2]];
– if t = t1 ∨ t2 then [[t]] = [[t1]] ∨ [[t2]].

Let X : ∆ → {true, false} be a valuation for ∆, then the semantics of t w.r.t.
X, denoted [[t]](X) ∈ {true, false}, consists in evaluating the associated Boolean
formula [10].

In order to assess whether an attack was successful, we can use an attack
tree to monitor the executions of an IoT system. Given an execution trace σ,
its corresponding valuation X(σ) sets ve to true if the event e occurred in σ. If
[[t]](X(σ)) is true then the execution σ is a successful attack of t.

4 SBIP: A Stochastic Component Based Model

SBIP [4, 2] is a stochastic, component based framework that allows modeling
hierarchical systems from atomic components. We introduce SBIP in four steps:
we start with some preliminary notations; then we introduce the syntax of the
atomic components; next its semantics; and lastly we explain how to compose
atomic components into hierarchical systems.

4.1 Preliminaries

Let V be a set of variables, and for each variable vj ∈ V , let Dj be its data
domain, denoted by vj : Dj . A valuation for the variables in V is a function
X : V → ∪jDj which assigns values to variables. We denote X(v) the valuation
of the variable v ∈ V .

Let E be a set of operators. We denote by E[V] the set of expressions con-
structed from a set of variables V and operators. A function f(V) is then just
an expression in E[V]. We denote X(e) the valuation of the expression e ∈ E[V]
according to the valuation of the variables in V .

We write v := e for an assignment, or update of v, and write A[V] for a set
of assignments for the variables in V .

We distinguish between two types of variables: the deterministic variables
and the random variables, used for encoding the stochastic behavior. A ran-
dom variable v is associated with a probability distribution µ over its valuation
domain D, denoted as v ∼ µ, where µ : D → [0, 1] and

∑
x∈D µ(x) = 1.

Lastly, we denote (f ◦ g)(x) = f(g(x)) the composition of functions. If the
two functions have disjoint domains, we write ftg for their disjoint composition.
We use ∪ for set union and] for disjoint union.

4.2 Stochastic Atomic Components

SBIP components are 1-safe Petri-Nets equipped with (i) ports that allow the
component to communicate with other components; and (ii) variables that can
be read and updated during communications.

Definition 4. A stochastic atomic component consists of the tuple B = (P, V,N),
where

– P is a set of communication ports.
– V = V d] V p, with V d = {v1, . . . , vn} a set of deterministic variables and
V p = {vp1 , . . . , vpm} a set of random variables with an associated distribution
vpi ∼ µi.

– N = (L,L0, T) is a Petri-Net4 where L is a set of places and L0 ⊆ L are the
initial places. T is a set of transitions t = (•t, 〈p, g, f〉, t•) where •t (resp. t•)
is the set of input (resp. output) places of t. Transitions are labeled by the
triple 〈p, g, f〉 where p ∈ P is a port, g ∈ E[V] is a guard and f = (fd, Rp)
is an update function, such that fd = {v := f(V) | v ∈ V d} ∈ A[V] is a set
of functions that update the deterministic variables and Rp ⊆ V p is a subset
of random variables to be updated.

We sometimes write pt, gt and fdt , Rpt for the label of t. We define markings
as the set of functions m : L → {0, 1}. Given two markings m1, m2 we define
inclusion m1 ≤ m2 iff for all l ∈ L, m1(l) ≤ m2(l). Also, we define addition
m1+m2 as the marking m12 such that, for all l ∈ L, m12(l) = m1(l) +m2(l).

A priority order on a set of ports is a partial order, where each element p < p′

of the order is called a priority. Whenever the system has a choice between the
two interactions on two ports p or p′, the interaction on p′ is chosen.

4.3 Semantics of Stochastic Atomic Components

The semantics of a SBIP component B = (P, V,N) consists of a transition
system M, where the states are of the form (m,X), for m a marking of N and
X a valuation of V .

The random variables engender a probabilistic behavior over transitions of
M. Let us consider an atomic component B in Figure 4a that has a transi-
tion going from place l1 to place l2 using port p, with a guard that is always
true, and which updates a random variable v with the valuation domain D and
distribution µ. Assuming the initial value of v is x0, when executing B, there
will be several possible transitions, shown in Figure 4b, from state ({l1}, x0) to
states ({l2}, xi) for all xi ∈ D. The probabilities of these transitions is given
by µ. Since the random variables are independent, when several random vari-
ables are updated, the resulting distribution on transitions is the product of the
distributions associated to each variable.

4 N is equivalent to the extended 1-safe Petri-Net (L,L0, T, F) where F = {(l, t) |
l ∈ •t} ∪ {(t, l) | l ∈ t•} is the token flow relation and can be deduced from T .

l2

l1

p

v = x0
v ∼ µ

v

(a) A Stochastic Atomic Component B

(l1, x0)

µ

(l2, xi)

pp

(b) Behavior of B

Fig. 4: Example of a stochastic atomic component B and its behavior.

Atomic components with random variables lead to behaviors that combine
both stochastic and non-deterministic aspects. A transition is possible if a com-
munication is ready on its associated port. At any given state, several ports
can be ready for a communication, and thus several transitions can be enabled,
regardless of whether they are associated or not with random variables. Non-
determinism is always resolved in SBIP to a probabilistic choice on an uniform
distribution. To formally state this, we denote with Enabled(m; X) the set of
transitions in T that are enabled by m for a valuation X: Enabled(m; X) = {t ∈
T | •t ≤ m and X(gt) is true}5.

Definition 5. The semantics of a stochastic component B = (P, V, (L,L0, T))
with Xinit an initial valuation, is defined as a probabilistic transition system
M = 〈Q, π, P, q0〉, where:

– Q is a set of states of the form (m,X); q0 = (m0,Xinit) is the initial state
where m0 is the marking associated to L0, i.e. m0(l) = 1 ⇐⇒ l ∈ L0 and 0
otherwise;

– π ⊆ Q× P ×Q is a set of transitions defined by the following rule:

t ∈ T •t ≤ m m′ = m−• t+ t• X(gt) = true

X′ = [vd := X(fdt), vp := random(µ)] vd ∈ V d vp ∈ Rpt , vp ∼ µ
(m,X)

pt−→ (m′,X′)

Lastly, we defined the probability of a transition as follows:

P
(
q

p−→ q′
)

=
1

|Enabled(m; X)|
·

∏
vi∈Rp,vi∼µi

µi(X
′(vi)).

In the definition above we say that the state (m′,X′) is a successor of state
(m,X), if t is a transition of T enabled by the marking m, the guard gt evaluates
to true and the new valuation X′ on the variables V d∪V p is obtained by applying
fdt on the deterministic variables V d and updating the random variables in Rpt .
The probability of a transition is computed by first selecting a transition with
an uniform distribution from the set of enabled transitions; and then, selecting
the next state according to the distributions attached to the random variables.

5 Remark that the cardinality of Enabled(m;X) can be greater than one.

4.4 Composition of Stochastic Components

Definition 6. An interaction γ = (P,G, F) on a set of components Bi = (Pi,
Vi, Ni), for i ∈ I, where I is set of indexes, consists of:

– P = {pi | pi ∈ Pi, i ∈ I} is a disjoint set of ports containing exactly one port
from each Bi, i ∈ I;

– G is a global guard defined on Vγ = ∪i∈IVi;
– F = {v := F (Vγ) | v ∈ ∪i∈IV di } is a global update function used to exchange

values between components.

For n atomic components and for Γ a set of interactions, we write Γ (B1, . . . ,Bn)
their composition into a stochastic component. Intuitively the local transitions
of the atomic components synchronise to produce global transitions using the
interactions.

Definition 7. Let Γ be a set of interactions defined on n components Bi =
(Pi, Vi, Ni), with Ni = (Li, L0,i, Ti) for i ≤ n. The composition of the n compo-
nents, denoted as Γ (B1, . . . ,Bn), is a stochastic component B = (Γ, V,N), with
N = (L,L0, T), defined as follows:

– V = ∪i≤nVi;
– L = ∪i≤nLi with L0 = ∪i≤nL0,i ;
– T =

{
(•Tγ , 〈γ, g, f〉, T •γ) | γ ∈ Γ

}
, where Tγ = {ti | pi ∈ Pγ} is the set of

transitions that synchronize on the interaction γ ∈ Γ . Then •Tγ = {l | l ∈•
ti, ti ∈ Tγ} and T •γ = {l | l ∈ t•i , ti ∈ Tγ}. Each transition is labeled by the
triple 〈γ, g, f〉 where g = Gγ ∧ (

∧
ti∈Tγ gti) and f = (tti∈Tγfti) ◦Fγ consists

of the composition of all fti with Fγ .

Assembling stochastic atomic components produces a stochastic atomic com-
ponent, and thus its semantics is given by Definition 5.

We use a priority order, denoted �, which gives priority to the internal
transitions over the binary interactions. We write then 〈�〉(Γ (B1, . . . ,Bn)) for
a SBIP system.

5 Transformation from IoT to SBIP

We now show how to transform an IoT system to SBIP. Entities of an IoT
model become atomic components and their communications is represented as
interactions.

An entity can have several threads running, all sharing the same knowledge.
To model this we encode each thread of a process into a Petri Net (Definition
8). The encoding of a process is then the union of the several Petri Nets, which
all have a common set of variables, guards and update functions (Definition 9).

The deterministic variables are used to model the entity’s knowledge. The
random variables, similarly to [4], encode the probabilities associated to actions
in a summation process.

We use labeling functions on places and on the random variables, denoted by
`. The labels are the threads of the original IoT system. Moreover we identify
places that have congruent labels, i.e. l1 ≡L l2 ⇐⇒ `(l1) ≡P `(l2). We write lT
and vT when `(l) = T and `(v) = T , respectively.

Definition 8. For a thread T , let Definitions and Actions be the sets of thread
definitions and of actions, respectively, used recursively in T . We define the
transformation of T to be the atomic component (Actions, V d] V p, (L,L0, T))
with:

– V d = {vc | c is a protocol used in T};
– V p = [[T]]v ∪ {[[U]]v | A

def
= U and A ∈ Definitions};

– L =
(
[[T]]s ∪ {[[U]]s | A

def
= U and A ∈ Definitions}

)
≡L

is a set of places

partitioned in equivalence classes by the ≡L relation, with L0 = {lT };
– T = [[T]]t ∪ {[[U]]t | A

def
= U and A ∈ Definitions}.

In our transformation we use the functions [[·]]v, [[·]]s and [[·]]t to transform
a thread into a set of places, random variables and transitions. The functions
are formally defined in Figure 5. Intuitively, for each possible continuation of T
we introduce a new place, and we use the labeling function on places to keep
track of the correspondence between places and threads. Also whenever T is of
the form

∑
i∈I [ni]ai.Ti we introduce a new place, denoted l?T . This additional

place is where the choice between the different branches of the sum is made.
The random variables are defined using the function [[·]]v. Whenever T is of
the form

∑
i∈I [ni]ai.Ti we introduce a new random variable vT . The valuation

domain D for vT is the set of states associated to the possible continuations i.e.
D = {ai.Ti}i∈I . The probability distribution of vT is defined by the probabilities
ni i.e. µ(ai.Ti) = ni. Lastly, [[T]]s defines the transitions. The guards are only used
when making a probabilistic choice: Suppose we are currently running thread T
and we wish to go from state l?T to a state lTi . The guard then checks that the
value of the random variable vT is updated to ai.Ti. For the rest of transitions,
the guard is the constant true.

Definition 9. Let e be an entity in an IoT system with the initial state s0 =
〈P, k〉 and P = T1 | · · · | Tm. Let (P j , V j , (Lj ,Lj0, T j)) be the atomic components
obtained from each Tj, j ≤ m.

We define the transformation of e as the atomic component Be = (P, V,N)
with P = ∪j≤mPj, V d = ∪j≤mV dj , V p =]j≤mV pj and with N = (]j≤mLj ,
]j≤mLj0,]j≤mT j). We also define the initial valuation Xinit(vc) = k(c) where
for each protocol c we initialize the variable vc to the set of values k(c).

Note that we are using set union for ports and variables as the different
threads of an entity share their ports and knowledge. However, in order to
clearly separate the behaviour of the different threads, we use disjoint union
when combining the Petri Nets of the different threads. This is allowed because
the different threads in an entity cannot interact with each other, but only with
other entities.

[[
∑
i∈I

[ni]ai.Ti]]v =
⋃
i∈I

[[ai.Ti]]v ∪ {vT | vT ∼ µ s.t. µ(ai.Ti) = ni,∀i ∈ I}

where T =
∑
i∈I

[ni]ai.Ti and |I| > 1

[[a.T]]v =[[T]]v

[[A]]v = [[0]]v =∅

[[
∑
i∈I

[ni]ai.Ti]]s =
⋃
i∈I

[[Ti]]s ∪ {lT , l?T }, where T =
∑
i∈I

[ni]ai.Ti and |I| > 1

[[a.T]]s =[[T]]s ∪ {la.T }
[[A]]s ={lA}
[[0]]s ={l0}

[[
∑
i∈I

[ni]ai.Ti]]t =
⋃
i∈I

(
({l?T }, 〈ai, g = (vT == ai.Ti), f〉, {lTi}) ∪ [[Ti]]t

)
∪ ({lT }, 〈τ, true, f?〉, {l?T }) where T =

∑
i∈I

[ni]ai.Ti and |I| > 1

[[a.T]]t =({la.T }, 〈a, true, f〉, {lT }) ∪ [[T]]t

[[0]]t = [[A]]t =∅

where f = {v := v | v ∈ V d} and Rp = ∅ and f? defined as f but with Rp = {vT }.

Fig. 5: The functions used in the transformation in Definition 8

Communications between two entities e1 and e2 in the IoT language are
transformed into a set of guarded interactions between components Be1 and Be2 .

Definition 10. Let Bei = (Pi, Vi, Ni) be the transformation of an IoT system
with n entities ei and with the initial state s0. For all a ∈ Actions, if there exists
a′ ∈ Actions such that

– either a = e1
c−→
v
e2 and a′ = e2

c←− e1,

– or a = e1 −−−�
v

e2 and a′ = e2 � e1

then we define an interaction γ=({a, a′}, G, F) where

– if a = e1
c−→
v
e2 then G = (∃x ∈ v1c such that x ∈ v2c) for v1c ∈ V d1 , v2c ∈ V d2 ;

otherwise G = true;
– F = {v2c′ := v2c′ ∪ {v} | protocol(v) = c′, v2c′ ∈ V d2 }

and where V d1 , V d2 are the deterministic variables of Be1 and Be2 , respectively.
We also define the interaction ({τ}, true, F), where F = {v := v | v ∈ V d},

for every component Be = (P, V,N).

Note that interactions are only defined for consistent pairs of SendReceive and
LeakCollect reflecting the rules in Figure 2.

Given an IoT system with n entities and an initial state s0 let us write Γ
for the set of interactions of Definition 10. Recall that � is the priority order
of Section 4.4 and that Γ (B1, . . . ,Bn) is the composition of the n entities, as in
Definition 7. Then 〈�〉(Γ (B1, . . . ,Bn)) is the resulting SBIP system. We have
everything in place to show a correspondence between the semantics of the IoT
system and of its SBIP transformation.

Theorem 1. Let (S,L, T, s0) be an IoT system where s0 = 〈P1, k1〉 | · · · 〈Pn, kn〉
and where 〈Pi, ki〉 is the initial state of each enity ei, i ≤ n. Let Bei be the SBIP
transformation and Xi

init be the initial valuation of the entity ei and let Γ be the
corresponding set of interactions. Lastly, let M = (Q, π, P, q0) be the semantics
of 〈�〉(Γ (B1, . . . ,Bn)) with the initial valuation X1

init t · · ·Xn
init. Then there

exists R ⊆ S ×Q a symmetric relation such that

– (s0, q0) ∈ R;

– if (s, q) ∈ R then for all s′ ∈ S and s
[n]−→
l

s′ ∈ T there exists q′ ∈ Q and

q
p−→ q′ ∈ π with P(q

p−→ q′) = n such that (s′, q′) ∈ R.

Lack of space prevents us from writing the proof here, but it is available in the
appendix. Moreover, the proof is a straightforward, albeit tedious, application
of the definitions. As we noted at the beginning of the section, the correspon-
dence between IoT processes and their SBIP components is kept throughout
the transformation thanks to the labeling functions. The stochastic behavior of
SBIP is implemented in IoT by the Choice rule. Lastly priorities in SBIP are
implemented by the rules ParState Tau and ParState Interaction.

EA_phone

L_phone

L_email

L_issue

Hospital

Hospital Employee

HA AH

Employee

EmployeeHospital Attacker

L_email

Leak_Cr1Leak_Cr2
phone
AE_ AE_

mail

HA

L_phone

L_issue

AH

EA_phone EA_mailLeak_Cr2

Leak_Cr1

AE_phon

AE_mail EA_mail

`3A `4A

`1
A′

`1A

`1H

`2
H′

τ

`2E

`2
E′

`1
E′

τ

`1E

τ1

`2H
τ2

τ

Fig. 6: Transformation of the Smart-Hospital example

As an example, we show in Figure 6 the transformation of the IoT model of
the Smart Hospital in an SBIP component.

6 Evaluating the Probability of an Attack

In this section we use executions of an IoT system to evaluate the probability
of an attack. Thanks to Theorem 1, instead of reasoning on an IoT system, we
can use the corresponding SBIP system.

We employ two SMC techniques. We first use the Monte Carlo method,
which consists of sampling executions and then estimating the probability of an
attack, based on the number of executions for which the attack was successful.
However, as we will see in the next section, the Monte Carlo method requires a
large number of simulations for a correct estimate of an event which occurs with
probability 10−5. The experimental framework we used does not scale well for
a large number of simulations. We therefore employed a second SMC technique,
called importance splitting [9]. This technique is tailor-made for rare events, that
is precisely events that occur rarely in a simulation, and for which Monte Carlo
does not scale.

Importance splitting requires the decomposition of an execution leading to
an attack into a sequence of elements, called levels and denoted li, for i ≤ m
and for a decomposition in m levels. The first level is reached by all executions,
while the last level is reached only if the attack succeeds. The levels are ordered
l0 < · · · < lm meaning that level li is reached only if the previous levels lj<i have
been reached before. We write P(σ > li) for the probability that li was reached
during an execution σ. Then P(σ > li) = P(σ > li | σ > li−1)P(σ > li−1).
Therefore we can compute the probability of the attack as follows:

∏n
i=1 P(σ >

li | σ > li−1). To infer the levels, importance splitting uses a score function
defined on executions. Intuitively the closer we get to a successful attack, the
higher the score.

Attack trees provide an initial decomposition of the attack, on which the
score function is defined. The attack tree is transformed into a SBIP component,
called a monitor. The leaves of the tree are some of the interactions between the
Attacker and the other components in the model. The branches of the tree are
internal transitions to the monitor component. In a monitor obtained from an
attack tree t we associate a Boolean variable, denoted vn, for every node (or
leaf) n of t. The variable associated to a leaf is set to true when the associated
event occurred in the monitored execution. The variables of each other node are
updated according to their corresponding Boolean expression.

We write h(t) for the height of a tree t and d(n, t) for the depth of node n in
t. The score of an execution is computed as score = h(t)− d(n, t), where n is the
highest node for which vn is true.

Definition 11 (Monitor). The monitor Mt = (P, V,N) of an attack tree t is
defined as follows:

– P = {pSR, pLC, pscore} consists of two ports used for observing the SR and LC
interactions and of a third port used for an internal transition that updates
the score;

– V = V d ∪ V p where V d = {score} ∪ {vn | n is a node of t} and V p = ∅;
– N = ({l0}, {l0}, T) is a Petri-Net with only one place l0 and with T =
{(l0, 〈p, true, f〉, l0) | p ∈ P} where f updates the variables vn and score.

For each interaction in an SBIP system, we add a port of the monitor to the
interaction. In this manner, the monitor can observe the system and update its
Boolean variables accordingly.

Definition 12. Let Γ be a set of interactions of a SBIP system. The set of
interactions Γ ′ between the SBIP system and a monitor Mt = (P, V,N) is
defined as follows: for all γ=({a, a′}, Gγ , Fγ) ∈ Γ , let ({a, a′, p}, Gγ , Fγtf) ∈ Γ ′
where p and f are defined as follows:

– if a = e1
c−→
v
e2 then p = pSR and f = {vn := true, if vn ∈ V }, for n = (SR, v);

– if a = e1 −−−�
v

e2 then p = pSR and f = {vn := true, if vn ∈ V } for

n = (LC, v);

7 Implementation and Experiments

In this section we describe the tool chain we implemented and some experiments
based on the Smart Hospital example. We provide all resources necessary for
replicating the experiments at http://iot-modeling.gforge.inria.fr.

Fig. 7: Tool-set Overview

In the diagram of Figure 7, we describe the tool chain we implemented.
The user provides an IoT system and an attack tree in the form of a json file.
We implemented two parsers, “IoT-to-BIP” and “json-to-BIP”, that transform
the IoT model and the attack tree into two SBIP files. The SBIP files are
compiled into a BIP executable. The BIP simulation engine runs the executable
and interacts with Plasma [5], the statistical model checker we used.

The results of our experiments are shown in Figure 8. The model we used is
based on our running example, the Smart Hospital.

We used two variants of our IoT model to calculate the probabilities of the
success of an attack using the Monte Carlo and the importance splitting methods.
The results and times presented in Figure 8 are obtained by averaging outcomes
of 10 iterations. We observe that importance splitting gives a correct estimate
from 1000 simulations, whereas the Monte Carlo method needs 100 times (1000
times for Model B) more simulations. However the importance splitting methods
does not behave well when running on a large number of simulations. Therefore
we argue that both methods are useful and complement each other in our anal-
ysis: Monte Carlo for estimating a probability n when we can produce around

http://iot-modeling.gforge.inria.fr

Model A Model B
Monte Carlo Importance Splitting Monte Carlo Importance Splitting

Nb of Result Time Result Time Result Time Result Time
Simulations (×10−5) (s) (×10−5) (s) (×10−5) (s) (×10−6) (s)

1000 0 6 6,7 8 0 6 6,4 8

10000 8,0 15 5,2 30 0 15 11,9 30

100000 6,7 255 7,0 1349 0 251 5,8 1088

1000000 6,4 10410 4,0E-5 26330 7,5 10423 4,3E-6 27013

Fig. 8: Experiments: In model B the leaks are twice less probable than in model A.

10/n simulations, and importance splitting for experiments with fewer simula-
tions.

8 Related Work

In this section we compare our work with some other works in the literature.
First we explain why we defined our own formal language for IoT. Then we look
at other works that used attack trees and model checking to analyse security
properties of a system.

The formal language we propose for specifying IoT systems is an extension
of [3] to probabilistic systems, inspired by the probabilistic CCS [17]. However
our treatment of probabilities is slightly different (see rule Choice in Figure 2).
An IoT model in our language is transformed into a SBIP system, which has
a given semantics. The operational semantics we defined therefore reflects the
way probabilities are handled in SBIP. Moreover, there are also some difference
in terms of expressiveness between CCS and our language. We designed our lan-
guage such that entities can store data (and thus have some notion of state) and
we distinguish between two types of interactions: either safe ones or interactions
that contain leaks of sensitive data. We motivate these features of our language
in Section 2.

Attack trees are used extensively for modeling security attacks, including
internet attacks as in [16]. In this work we use attack trees in combination with
a model checker to monitor a system’s execution and infer the probability of a
successful attack. We therefore restrict our survey to related works that do a
similar analysis.

In [11, 7] attack trees are translated into timed and stochastic automata.
Model checking is then used to infer various properties of an attack, such as its
probability of success or its cost. In [8] attack trees are translated into stochastic
Petri Nets such that attacks can then be simulated. Compared to these works,
we model both the attacks, using the attack trees, and the system on which the
attacks are carried. In our approach it is the model of the IoT system that is
decorated with probabilities and is simulated, and not the attack trees. Moreover,
the tools and the approach we propose can also tackle rare events in security
issues.

The authors of [13] presented a formal model to describe IoT systems and
ensure its functional correctness. Their proposed approach is similar to ours,
however the language we propose is more general and, similar to above, we allow
for a stochastic analysis that handles rare attacks.

In [14] the importance sampling technique for rare events is applied to fault-
trees, a variant of attack trees. The technique consists of computing a new dis-
tribution that makes the rare event more frequent. The results are then adjusted
w.r.t. the difference between the normal distribution and the importance sam-
pling one. Our method based on importance splitting, is better suited for attack
trees, as the intermediate steps leading to a rare event correspond to the nodes
in the tree leading to a successful attack. Moreover, there are no additional steps
as in the case of importance sampling.

Formal semantics for attack trees have been proposed in [12, 10] and we draw
inspiration from them when introducing attack trees in Section 3.

9 Conclusion

In this paper, we proposed a sound probabilistic framework for modeling IoT
systems and verifying its security using attack trees. The approach consists on
transforming a high level IoT model and its attack tree into a SBIP model. We
showed on a complex example how to estimate the probability of success of an
attack using SMC techniques.

Acknowledgements. We would like to thank Axel Legay for his helpfull sugges-
tions on importance splitting, and Jean Quilbeuf for his technical help in the
tool implementation.

References

[1] Anatomy of an Attack, MEDJACK (Medical Device Attack). Tech. rep.
May 2015.

[2] Ananda Basu, Marius Bozga, and Joseph Sifakis. “Modeling Heteroge-
neous Real-time Components in BIP”. In: SEFM. 2006. doi: 10.1109/
SEFM.2006.27.

[3] Delphine Beaulaton et al. “A Language for Analyzing Security of IOT
Systems”. In: SoSE. 2018. doi: 10.1109/SYSOSE.2018.8428704.

[4] Saddek Bensalem et al. “Statistical Model Checking Qos Properties of
Systems with SBIP”. In: ISoLA. 2012. doi: 10.1007/978-3-642-34026-
0_25.

[5] Benôıt Boyer et al. “PLASMA-lab: A Flexible, Distributable Statistical
Model Checking Library”. In: QEoS. 2013. doi: 10.1007/978-3-642-
40196-1_12.

[6] ENISA. Smart Hospitals, Security and Resilience for Smart Health Service
and Infrastructures. Tech. rep. 2016.

https://doi.org/10.1109/SEFM.2006.27
https://doi.org/10.1109/SEFM.2006.27
https://doi.org/10.1109/SYSOSE.2018.8428704
https://doi.org/10.1007/978-3-642-34026-0_25
https://doi.org/10.1007/978-3-642-34026-0_25
https://doi.org/10.1007/978-3-642-40196-1_12
https://doi.org/10.1007/978-3-642-40196-1_12

[7] Olga Gadyatskaya et al. “Modelling Attack-defense Trees Using Timed Au-
tomata”. In: FORMATS 2016 -14th International Conference on Formal
Modelling and Analysis of Timed Systems. Quebec City, Canada, 2016,
pp. 35–50. url: https://hal.inria.fr/hal-01406706.

[8] George C. Dalton II et al. “Analyzing Attack Trees using Generalized
Stochastic Petri Nets”. In: 2006 IEEE Information Assurance Workshop.
2006. doi: 10.1109/IAW.2006.1652085.

[9] Cyrille Jegourel, Axel Legay, and Sean Sedwards. “Importance Splitting
for Statistical Model Checking Rare Properties”. In: CAD. 2013. doi: 10.
1007/978-3-642-39799-8_38.

[10] Barbara Kordy, Marc Pouly, and Patrick Schweitzer. “Computational As-
pects of Attack–Defense Trees”. In: Security and Intelligent Information
Systems. 2012.

[11] Rajesh Kumar et al. “Effective Analysis of Attack Trees: A Model-Driven
Approach”. In: Fundamental Approaches to Software Engineering. 2018.

[12] Sjouke Mauw and Martijn Oostdijk. “Foundations of Attack Trees”. In:
Proceedings of the 8th International Conference on Information Security
and Cryptology. ICISC’05. Seoul, Korea: Springer-Verlag, 2006, pp. 186–
198. isbn: 3-540-33354-1, 978-3-540-33354-8. doi: 10.1007/11734727_17.
url: http://dx.doi.org/10.1007/11734727_17.

[13] Samir Ouchani. “Ensuring the Functional Correctness of IoT through For-
mal Modeling and Verification”. In: Model and Data Engineering. Ed. by
El Hassan Abdelwahed et al. Cham: Springer International Publishing,
2018.

[14] Enno Ruijters et al. “Rare Event Simulation for Dynamic Fault Trees”.
In: CSRS. 2017. doi: 10.1007/978-3-319-66266-4_2.

[15] Bruce Schneier. Secrets & Lies: Digital Security in a Networked World.
2000.

[16] Terry Tidwell et al. “Modeling Internet Attacks”. In: IA. 2001.
[17] R.J. Vanglabbeek, S.A. Smolka, and B. Steffen. “Reactive, Generative, and

Stratified Models of Probabilistic Processes”. In: Information and Compu-
tation 121 (1995). doi: https://doi.org/10.1006/inco.1995.1123.

https://hal.inria.fr/hal-01406706
https://doi.org/10.1109/IAW.2006.1652085
https://doi.org/10.1007/978-3-642-39799-8_38
https://doi.org/10.1007/978-3-642-39799-8_38
https://doi.org/10.1007/11734727_17
http://dx.doi.org/10.1007/11734727_17
https://doi.org/10.1007/978-3-319-66266-4_2
https://doi.org/https://doi.org/10.1006/inco.1995.1123

Appendix

Counting functions for the Operational Semantics of IoT

Definition 13 (Counting τ transitions from a state). The functions countτ :
State→ N and count procτ : Proc→ N are defined as follows:

countτ (s|t) =countτ (s) + countτ (t)

countτ (〈P, k〉) =count procτ (P)

count procτ (0) =0

count procτ (α.P) =1 if α 6= τ

0 if α = τ

count procτ (
∑

αi.Pi) =1

count procτ (P | Q) =count procτ (P) + count procτ (Q).

For counting the number of interactions, we have first to rewrite a state into
a canonical form:

s ≡sS | sR | sL | sC where sS =〈P S
1 , k

S
1 〉 | · · · 〈P S

nS , k
S
nS〉

sR =〈PR
1 , k

R
1 〉 | · · · 〈PR

nR, k
R
nR〉

sL =〈PL
1 , k

L
1 〉 | · · · 〈PL

nL, k
L
nL〉

sC =〈PC
1 , k

C
1 〉 | · · · 〈PC

nC , k
R
nC〉

and where P S
i ≡ a.P and the action a is a send; nS is the number of processes

of the form above in s. Similarly we define the rest of the processes. Note that
if we cannot rewrite a state in this form then the rule ParState Interaction
cannot be applied (any internal or sum transitions have priority over the in-
teractions). Moreover entities can only communicate with other entities, that is
interactions are not defined internally to an entity. We therefore only need to
count interactions between entities.

The function countSR,LC uses an auxiliary function · : action→ action which
defines an action a which can synchronise with a using the rules SendReceive
or LeakCollect.

Definition 14. Let s ≡ sS | sR | sL | sC be a state in a canonical form. The
function countSR,LC : State→ N is defined on s as follows:

countSR,LC(sS | sR | sL | sC) = countSR(sS , sR) + countLC(sL | sC)

countSR(〈a.P, k〉 | s, t) = count(a, t) + countSR(s, t)

countLC(〈a.P, k〉 | s, t) = count(a, t) + countLC(s, t)

count(a, 〈b.P, k〉 | t) = 1 + count(a, t) if a = b

= count(a, t) otherwise

Proof of Theorem 1

Lemma 1. Any two congruent IoT states have the same transformation in
SBIP systems.

Proof. We proceed by cases on the congruence relation. First consider the con-
gruence relation on states: For the monoid laws on |, note that the transformation
results in a set of atomic components and therefore the order of states in the
parallel composition does not matter. In the case where processes are congruent,
we distinguish two subcases: (i) Threads in a parallel composition translate into
tuples of states in the transformation of a process (Definition 9) where the order
of the states does not matter; (ii) For the rest we use the fact that inside an
atomic component the states that have congruent labels are identified.

Proof (Theorem 1). Let e1, · · · , en be n entities of an IoT system (S,L, T, s0)
with the initial states 〈P1, k1〉, · · · 〈Pn, kn〉. Bei = (Pi, Vi, Ni) with Ni = (Li, Li,0,
Ti, Fi), is the transformation of the current state of the entity ei, for i ≤ n. Also
let Vi = V pi ∪V di . We write (P,Q, π, q0) for the semantics of 〈�〉Γ (Be1 , · · · Ben) =
(Γ,V,N) with N = (L,L0,T,F). Lastly Xinit is the initial valuation.

To construct the relation R ⊆ S × Q required by the theorem, we first set
some notations and constraints below. Informally, these constraints establish the
relation between the processes and knowledge functions in states of S and the
markings and the valuations, respectively, in states of Q.

1. Correspondence between Processes and Markings. For a thread T
let us write mT for the marking associated with T and defined as follows:

mT (l) =1 if `(l) = T or `(l) = U?, U = [n]T + T ′, for some threads T ′, U

0 otherwise

where (P, V,N) and N = (L,L0, T ,F) is obtained as in Definition 8 and
where l ∈ L. For a process P = T1 | · · · | Tm, let us write mP for the
marking associated with P and defined as mT1 + · · ·+mTm .

2. Correspondence between Knowledge and the Deterministic Vari-
ables. From Definition 8 it follows that for each thread Tj in a process Pi we
define the set V di = {vc | c is a protocol used in Tj}. From Definition 9 then
the set of variables of Pi = T1 | · · · | Tm is ∪j≤mVj = {vc | c is a protocol
used in Pi}.
Then, if Xi the current valuation of entity ei, we require that Xi(vc) = ki(c),
for i ≤ n, c ∈ C and vc ∈ V di . Recall that we write C for the set of protocols
used in the IoT system and ki for the knowledge function of an entity ei.

3. Correspondence between Probabilistic Choices in Processes and
the Random Variables. For every summation thread U in a process Pi, we
have that there exists a random variable vU ∈ V pi , by Definition 8. Moreover,
if T a thread of Pi, belongs to a summation, i.e. U = [n]T + T ′, for some
threads T ′, U , then for the current valuation Xi we have that Xi(vU) = T .
For a process P = T1 | · · · | Tm we use Definition 9 and have that V p is
the disjoint union of all V pj , where V pj is the set of random variables for Tj ,
j ≤ m.

We define the following relation between the states of S and the states of Q:

R =
{

(〈P1, k1〉 | · · · | 〈Pn, kn〉,(m = mP1 + · · ·mPn ,X = X1 t · · · tXn)) |
the conditions 1-3 above hold

}
.

We show that R is the relation required in Theorem 1. First we have to show
that (s0, q0) ∈ R.

We use Definition 8 from which we have that L0 = {lT } is the initial place
in the transformation of a thread T . Then, by Definition 9, L0 =]j≤mLj0 =
]j≤m{lTj} is the initial set of places in the transformation of a process P =
T1 | · · · | Tm. From Definition 7 it follows that L0 =]i≤nL0,i. By Definition 5
the initial marking in q0 = (m0,Xinit) is defined as m0(l) = 1 ⇐⇒ l ∈ L0 and
0 otherwise. Hence we can write m0 = mP1

+ · · ·+mPn . This shows condition 1
of R.

From Definition 9 we have that for each entity ei, Xinit(vc) = ki(c), for all
protocols c used by ei. From Definition 7 the set of variables of the composed Bei
components is the disjoint union Vi, i.e. V =]i≤nVi, in particular Vd =]i≤nV di .
Then a valuation for V is the disjoint composition of the individual valuations for
Vi, from which it follows the required decomposition of Xinit in q0 = (m0,Xinit).
Therefore condition 2 of R holds. For condition 3 to hold suffices to note that
there is no probabilistic choice made yet in any process and therefore there is
no correspondence to show. We can take any initial valuation we want for the
random variables.

Let us now suppose that (s, q) ∈ R and that s
[n]−→
l
s′, for some label l ∈ L,

some probability n and state q′ ∈ Q. We have to show that there exists q′ ∈ Q
and q

p−→ q′ ∈ π with P(q
p−→ q′) = n such that (s′, q′) ∈ R. We reason by cases

on the label l of the transition s
[n]−→
l
s′.

– Let l = SR : v or l = LC : v; then let e1 and e2 be the two communicating
entities. Using Lemma 1 we can rewrite the transition as follows:

s = 〈P1, k1〉 | 〈P2, k2〉 | 〈P3, k3〉 | . . . | 〈Pn, kn〉
[1/m]−→
l

s′ = 〈Q1, k
′
1〉 | 〈Q2, k

′
2〉 | 〈P3, k3〉 | . . . | 〈Pn, kn〉

where we can decompose P1 ≡P a1.T1 | P ′1 and P2 ≡P a2.T2 | P ′2, Q1 ≡P
T1 | P ′1 and Q2 ≡P T2 | P ′2, again by Lemma 1 and from the rules of Figure 2.
Here we suppose w.l.o.g. that a1 and a2 are the two synchronizing actions
in P1 and P2, respectively. Also suppose w.l.o.g. that a1 is a send (or a leak)
and that a2 is a receive (or a collect). Let c be the protocol used for the
communication in case l = SR : v.
From (s, q) ∈ R we have that q = (mP1

+ · · ·mPn ,X1 t · · · tXn) and that
mPi = mai.Ti + mP ′

i
, for i ≤ 2. Also from condition 1 of R, mai.Ti = {li}

with either `(li) = ai.Ti, or `(li) = U?i , for some summation threads U1, U2.

• If `(l1) = a1.T1 then we use the transformation of Definition 8 to show
that there exists the place l′1 ∈ L1, with `(l′1) = T1 and the transition
t1 = ({la1.T1}, 〈a1, g1 = true, f1〉, {lT1}) in B1.

∗ If `(l2) = a2.T2 then as above, there exists l′2 ∈ L2, with `(l′2) = T2
and the transition t2 = ({la2.T2

}, 〈a2, g2 = true, f2〉, {lT1
}) in B2.

∗ `(l2) = U?2 , with U2 = [n2]a2.T2 + U ′2 , for some threads U2, U
′
2. As

in the case above, from Definition 8 we have that there exists the
places l′2 ∈ L2 with `(l′2) = T2. We also have, from condition 3 of R
that there exists a random variable vU2

∈ V p2 with X(vU2
) = a2.T2.

Moreover we have the transition t2 = ({lU?2 }, 〈a2, g2 = (vU2
==

a2.T2), f2〉, {lT2
}) in B2.

• the other case is similar.
Note that in all cases above, fi = {v := v | v ∈ V d} with Rpi = ∅, i ≤ n.
Using Definition 10 we have that there exists an interaction γ = ({a1, a2}, G, F)
such that
• If l = SR : v then G = (∃x ∈ v1c such that x ∈ v2c) for v1c ∈ V1 and
v2c ∈ V2.

• If l = LC : v then G = true.
Also, F = {v2c′ := v2c′ ∪ {v′} | protocol(v′) = c′, v2c′ ∈ V2} for both l = SR : v
and l = LC : v.
We now use Definition 7 and have that there exists the transition

T = ({l1, l2}, 〈γ, g1 ∧ g2 ∧G, (f1 t f2) ◦ F 〉, {l′1, l′2}) ∈ T.

We have to show that the guard g = g1∧g2∧G holds for the current valuation
X:
• If g1 = (vU1 == a1.T1) then X(g1) holds from condition 3 ofR; otherwise
g1 = true. We proceed similarly for g2.

• If l = SR : v then G = (∃x ∈ v1c such that x ∈ v2c) for v1c ∈ V1 and
v2c ∈ V2. From condition 2 of R we have that X(vic) = ki(c), i ≤ n. Then
the guard holds as it is the condition of rule SendReceive in Figure 2.
If l = LC : v then G = true.

The transitions above are allowed to proceed by the priority order � (see
Definition ??) only if there is no internal transition available. This is the
case as ensured by the rule ParState Interaction in Figure 2.
Therefore, by Definition 5, there exists the transition

q = (mP1
+mP2

+ · · ·mPn ,X1 t · · · tXn)
γ−→ q′ = (m′,X′)

where we have to show that conditions 1-3 of R hold. For condition 1 we
have to show that m′ = mQ1

+mQ2
+ · · ·mPn . Using Definition 5 it follows

that

m′ = m−• T + T • = m− {l1, l2}+ {l′1, l′2}.

As L0 =]i≤nL0,i, from Definition 7, it follows that

m′ = (mP1 − {l1}+ {l′1}) + (mP2 − {l2}+ {l′2}) + · · ·+mPn .

Using condition 1 ofR on mP1
and mP2

we have that mP1
−{l1}+{l′1} = mQ1

and similarly for mQ2
.

Let us now show condition 2, i.e. X′ = X′1tX′2t· · ·tXn and X′i(vc′) = k′i(c
′),

i ≤ 2. Using the function F above we have that X′i(vc′) = Xi(vc′)∪{v}. From
rules SendReceive and LeakCollect we also get that k′i(c

′) = ki(c)∪{v},
i ≤ 2.
As Rp1 = Rp2 = ∅ condition 3 is trivial.
Lastly, the two transitions have the same probability: |Enabled(m; X)| = m

by Lemma ??, and therefore P
(
q

p−→ q′
)

= 1/m.
– Let l = τ ; let e1 be the entity that triggers the internal transition. Using

Lemma 1 we can rewrite the states in the transition as follows:

s = 〈P1, k1〉 | 〈P2, k2〉 | 〈P3, k3〉 | . . . | 〈Pn, kn〉
[n]−→
l

s′ = 〈Q1, k
′
1〉 | 〈P2, k2〉 | 〈P3, k3〉 | . . . | 〈Pn, kn〉.

There are two possibilities: either P1 ≡P
∑
i∈I1 ai.Ti | P

′
1 where Q1 = a1.T1

w.l.o.g. or P1 ≡P τ.T1 | P ′1 with Q1 = T1. We write U =
∑
i∈I1 ai.Ti or

U = τ.T1 depending on which of the two cases we are.
From (s, q) ∈ R we have that q = (mP1

+ · · ·mPn ,X1 t · · · tXn) and that
mP1

= {l} + mP ′
1
, `(l) = U . We use the transformation of Definition 8 to

show that there exists the place l′ ∈ L1 and the transition t = ({l}, 〈τ, g =
true, f〉, {l′}) in B1.

• If U =
∑
i∈I1 ai.Ti then `(l′) = U?, f = {v := v | v ∈ V d1 } and Rp =

{vU}.
• If U = τ.T1 then `(l′) = T1, f = {v := v | v ∈ V d1 } and Rp = ∅.

Using Definition 10 we have that there exists an interaction γ = ({τ}, G =
true, F) with F = {v := v | v ∈ V d1 }.
From Definition 7 there exists the transition

T = ({l}, 〈γ, g1 ∧G = true, f ◦ F 〉, {l′}) ∈ T.

The guard trivially holds and we obtain the transition

q = (mP1
+ + · · ·mPn ,X1 t · · · tXn)

γ−→ q′ = (m′,X′)

where we have to show that conditions 1-3 of R hold. As in the first case,
condition 1 follows from m′ = m− {l}+ {l′} = mQ1 + · · ·mPn . Condition 2
trivially hold as the update functions f and F are the identity and therefore
X1
′ = X1. Indeed the knowledge function of k1 is not modified by the rules

Choice or Internal.
To show condition 3 we use Definition 8 from which we have that there
exists vU ∈ V p1 , vU ∼ µ, where µ(a1.T1) = n1. Then we can take X′(vU) =
a1.T1. We also this argument to show that the two transitions have the same

probabilities: by Lemma ??, |Enabled(m; X)| = m and therefore P
(
q

p−→
q′
)

= 1/m× n1.

Hereafter we prove the similarity of the IoT system to its corresponding

SBIP model. Let us suppose that (q, s) ∈ R and that q
γ−→ q′, for a transition

labelled with γ, where q, q′ ∈ Q. We have to show that there is a state s′ ∈ S
with s

[n]−→
l

s′, for some label l ∈ L, such that (s′, q′) ∈ R. We define s =

〈P1, k1〉 | 〈P2, k2〉 | · · · | 〈Pn, kn〉. Here we also reason by cases: whether the
transition is an interaction between two components Be1 and Be2 or an internal
transition.

– We consider the communication is an interaction γ = ({a1, a2}, G, F) be-
tween Be1 and Be2 :

q = (mP1
+mP2

+ · · ·mPn ,X1 tX2 t · · · tXn)
γ−→ q′ = (m′,X′)

As it is an interaction between two entities, from Definition 7 we have that
there exists the transitions ti = (mi, 〈pi, gi, fi〉,m′i) ∈ Ti, for i ∈ {1, 2}. From
the Definition 10, mi = mPi , pi = ai, gi = true and fi are the constant
update functions. From (q, s) ∈ R we have that mP1 = ma1.T1 +mP ′

1
, mP2 =

ma2.T2 +mP ′
2

with P1 = a1.T1 | P ′1 and P2 = a2.T2 | P ′2. Moreover, from the
Definition 5 there exists the transition

T = (mP1
+mP2

, 〈{a1, a2}, g1 ∧ g2 ∧G, (f1 t f2) ◦ F 〉,mQ1
+mQ2

) ∈ T

with mQ1
= mT1

+mP ′
1
, mQ2

= mT2
+mP ′

2
.

We distinguish between the two types of interactions:
• a1 = e1

c−→
v’

e2 and there exists a2 ∈ Actions such that a2 = e2
c←− e1,

• or a1 = e1 −−−�
v’

e2 and there exists a2 ∈ Actions such that a2 = e2 � e1

Following the Definition 10 we have the following guards:
• if G = (∃x ∈ v1c such that x ∈ v2c) for v1c ∈ V1 and v2c ∈ V2 then l = SR
• if G = true then l = LC

We can then apply the rules SendReceive or LeakCollect from Figure
2. Hence we derive an interaction between e1 and e2 exists for which we have
to show that conditions 1-3 of R hols.

s = 〈P1, k1〉 | 〈P2, k2〉 | . . . | 〈Pn, kn〉
[n]−→
l

s′ = 〈Q1, k
′
1〉 | 〈Q2, k

′
2〉 | . . . | 〈Pn, kn〉.

From above, it follows that m′ = mQ1
+ mQ2

+ · · ·mPn , which is the first
condition of R.
In the interaction γ, we apply the update function F = {v2c′ := v2c′ ∪
{v′} | protocol(v′) = c′, v2c′ ∈ V2} for both l = SR : v and l = LC : v,
then X′i(vc′) = Xi(vc) ∪ {v}. Therefore we can write X′ = X′1 tX′2 · · ·Xn.

With the interaction s
[n]−→
l
s′, we apply rules SendReceive or LeakCol-

lect from Figure 2 where k′i(c
′) = ki(c)∪{v}. Hence the condition 2 hols, i.e.

X′i(vc′) = k′i(c
′). With the execution of the γ interaction, the probabilistic

distribution Rp1 = Rp2 = ∅, and from the SendReceive or LeakCollect
from Figure 2 is the same, then the condition 3 trivially hols. The two tran-

sitions have the same probability: P
(
q

p−→ q′
)

= 1/m by Lemma ??, and
therefore |Enabled(m; X)| = m.

– We consider the transition to be an internal transition τ in component Be1 .
From lemma 1 we can write the transition:

q = (mP1
+mP2

+ · · ·mPn ,X1 tX2 t · · · tXn)
γ−→ q′ = (m′,X′)

where s = 〈P1, k1〉 | 〈P2, k2〉 | · · · | 〈Pn, kn〉, from (q, s) ∈ R, we distinguish
two cases of transition execution:
• A probabilistic choice: mP1

= {l} + mP ′
1

where `(l) =
∑
i∈I [ni]ai.Ti

and P1 =
∑
i∈I ai.Ti|P ′1. From the transformation of Definition 8, the

transition

t = ({lT }, 〈τ, true, f?〉, {lT?}) ∈ T1

can be executed where f? = ({v := v | v ∈ V d} and Rp = {vT }). From
relations of Figure 2, there exists a Choice transition in IoT system
such that

s = 〈P1, k1〉 | 〈P2, k2〉 | . . . | 〈Pn, kn〉
[n1]−→
l

s′ = 〈Q1, k
′
1〉 | 〈P2, k2〉 | . . . | 〈Pn, kn〉

where Q1 = a1.T1. Now we can verify if the conditions 1-3 of R holds.
We have that mQ1

= {`}? and m′ = mQ1
+ mP2

+ · · ·mPn . As the
update function f is the identity function the condition 2 trivially hold
and the knowledge k′1 = k1. To show condition 3 , we note that there
exists vT1

∈ V p1 , vT1
∼ µ such that X′(vT1

) = a1.T1. We use Definition 8
from which we have that where µ(a1.T1) = n1.

• An internal transition: mP1 = mτ.T1 +mP ′
1

and P1 = τ.T1|P ′1. From the
transformation of definition 8, the transition T = ({la.T }, 〈a, true, f〉, {lT })
can be executed where f = ({v := v | v ∈ V d} and Rp = ∅). From re-
lations of Figure 2, there exists an Internal transition in IoT system
such that

s = 〈P1, k1〉 | 〈P2, k2〉 | . . . | 〈Pn, kn〉
[n]−→
l

s′ = 〈Q1, k
′
1〉 | 〈P2, k2〉 | . . . | 〈Pn, kn〉

where Q1 = T1|P ′1. Now we can verify if the conditions 1-3 of R holds.
We have that mQ1 = mT1 +mP ′

1
and m′ = mQ1 +mP2 + · · ·mPn .

As the update function f is the identity function the condition 2 trivially
hold and the knowledge k′1 = k1. Then X′ = X′1tX2t· · ·tXn. Likewise,
since Rp = ∅ the condition 3 trivially holds.

	Security Analysis of IoT systems using Attack Trees

