
High-level Automatic Event Detection and User
Classification in a Social Network Context?

Fabio Persia1 and Sven Helmer2

1 Free University of Bozen-Bolzano, Piazza Domenicani 3, 39100 Bolzano, Italy
fabio.persia@unibz.it

2 University of Zurich, Binzmühlestrasse 14, 8050 Zurich, Switzerland
helmer@ifi.uzh.ch

Abstract. We present a framework for high-level automatic event detec-
tion and user classification in a social network context based on a novel
temporal extension of relational algebra, which improves and extends
our earlier work in the video surveillance context. By means of intuitive
and interactive graphical user interfaces, a user is able to gain insights
into the inner workings of the system as well as create new event models
and user categories on the fly and track their processing through the
system in both offline and online modes. Compared to an earlier version,
we extended our relational algebra framework with operators suited for
processing data from a social network context. As a proof-of-concept we
have predefined events and user categories, such as spamming and fake
users, on both a synthetic and a real data set containing data related to
the interactions of users with Facebook over a 2-year period.

Keywords: Event Query Languages · High-Level Event Detection · In-
tervals · Social Network Analysis · Behavior Identification in OSNs.

1 Introduction

In the era of big data we have to cope with continuously increasing data collec-
tions and data streams originating from various sources. Here, we look at logs
containing user interactions with a social network. Usually, the persons (or sys-
tems) evaluating the data are not interested in looking at the enormous amount
of raw events, but want to be informed about events on a more abstract level. For
instance, a log of user activities may pick up every single click of a user, but when
investigating the data we may be much more interested in detecting potentially
harmful activities and user categories, such as spamming or fake users.

In fact, Benevenuto et al. [3] analyze user activities through clickstream data,
initially focusing on statistical properties related to traffic and session workloads
(e.g. access frequency, session duration, etc.). In a second phase, they employ
a first-order Markov Chain to define a model of behavior describing dominant

? This work was supported by an internal grant from the Free University of Bozen-
Bolzano under IN2078 (HAMSIK - High-level AutoMatic event detection in a SocIal
networK context).

2 F. Persia and S. Helmer

activities and transition rates between them. Schneider et al. [12] perform an
analysis of clickstream data to identify typical user navigation strategies. They
reconstruct clickstreams from anonymous HTTP header traces obtained from
passively monitored network traffic with thousands of users from different Inter-
net Service Providers and then apply a flexible methodology for identifying user
sessions within the OSN. In addition, Amato et al. present a two-stage method
for anomaly detection in the behavior of persons while using a social network [1,
2]. In a first step, a Markov chain model is used to automatically learn typically
normal behavior of users. In a second step, an activity detection framework based
on a possible worlds model is applied to detect unexplained activities deviating
from the normal behavior.

Our approach models user behavior using complex events. Complex events
are usually described in terms of individual simple events standing in a certain
temporal relationship with each other. At the core of our system is a tempo-
ral relational algebra used to process high-level (and also medium-level) events.
This allows us to tap into new efficient methods developed for processing data
in temporal database systems [4, 11]. We deal with the complexity of high-level
events by dividing our system into three layers. The lowest layer generates raw
events, in our case related to individual time-stamped observation data depict-
ing users’ interactions with a social network (e.g., Facebook or Twitter). This
layer is highly dependent on the application domain and has to be adapted if we
want to move to another domain (we started from a video surveillance context
[8], but we are also planning to apply our framework to data from other hetero-
geneous data sets, such as Wikipedia, Yago3, or GovTrack4). The middle layer
takes raw events and creates simple events whose format is largely independent
of the application domain, thus separating the high-level event detection from
technical details of the raw events. Additionally, events generated by the middle
layer already contain some aggregated data, simplifying the high-level detection.
Finally, on the highest layer a user can construct the complex events that they
are really interested in, using medium-level events as building blocks. For ease of
use, we also provide a graphical user interface (GUI) for formulating high-level
events. The motivation of this paper comes from the fact that, to the best of
our knowledge, there are no other interactive frameworks in the social network
analysis context able to carry out the overall monitoring process from the low-
est up to the highest layers, as well as to improve the support users receive in
defining the event models they want to look for by means of smart graphical
user interfaces.

As a result, a user can employ our system in a highly interactive way. In our
demo, all the different parts of the event detection process on all three layers
of the system can be observed in action and also be modified. Event detection
can be run in two different modes. In the offline mode, a historical data set is
analyzed after all the raw events have been generated and are stored, for example

3 http://www.mpi-inf.mpg.de/departments/databases-and-information-
systems/research/yago-naga/yago/

4 https://www.govtrack.us/

High-Level Automatic Event Detection in a Social Network Context 3

in a database. This is generally used for forensic purposes. In the online mode,
the time-stamped low-level data is immediately processed by the system as it is
generated. For our demo, we plan to use two data sets - a synthetic and a real
one - that can be analyzed in the offline and online mode.

In summary, we make the following contributions:

– We present all three layers of a highly interactive event detection system,
ranging from the generation of raw events to the formulation of complex
high-level events.

– The system is based on an extension of relational algebra, ISEQL (Interval-
based Surveillance Event Query Language) [6], enriched with powerful tem-
poral operators.

– With respect to its previous version [6], we further enhance the expressiv-
ity of ISEQL, by introducing two new operators - cardinality and overlap
percentage - and implementing them in the form of PostgreSQL stored pro-
cedures; such operators are particularly useful for defining high-level event
models and user categories in a social network context.

– In the demo, we show the user interfaces of the system and also provide
insights into the inner workings by allowing users to run event detection in
an offline as well as an online mode.

2 System Architecture

The overall architecture of our proposed system is shown in Fig. 1. It consists of
three layers: an online social network (OSN) crawler, an interval action detector
and a high-level event detector. A similar architecture was the topic of earlier
work [5, 6, 9, 8] in a video surveillance context. The output of the OSN crawler
consists of a set Λ of collected data related to user sessions on a particular
OSN. More specifically, examples of such interactions are a user ”FABIO” who
logged in at timestamp ”2017-05-17 11:39:12”, or a user ”SVEN ”, who received
a message at timestamp ”2017-05-17 11:39:27” (Table 1). The interval action
detector extracts medium-level events from Λ by labeling a sequence of OSN
log entries with descriptors such as “Status&Friends” or “Shares”. This layer
produces as output a set M of medium-level annotations referring to intervals of
entries within the log. Consequently, each user session at this semantic layer is
modeled by means of a sequence of higher level intervals, rather than with a list
of time-stamped low-level action symbols. Eventually, the high-level event de-
tector takes a set E of event models and determines whether any of these events
occur in M . Moreover, it also performs the user classification, thus assigning to
each tracked user a category referring to a specific temporal interval. Thus, we
assume the availability of a log describing a sequence of user interactions with
an OSN. Our aim is to discover subsequences – in a log recording user activi-
ties – matching models of known user behavior and to perform an effective user
classification (the formal definitions of OSN Log, Interval Labeling, High-Level
Events, and User Classifications are given in [10]). More specifically, each of the

4 F. Persia and S. Helmer

listed layers consists of three different sublayers (Fig. 2): a graphical user inter-
face (GUI), an application core, and a database. The GUI, implemented using
Java Swing APIs, allows users to interact intuitively with the framework, guid-
ing them along in a step-by-step manner, making our system usable for people
with no prior knowledge in relational algebra. The Application Core, developed
in Java, collects all the input coming from the GUI, checking it for correctness.
On the other end, it stores PL/pgSQL versions of medium-level and high-level
event models to make them persistent. It also invokes existing event models on a
specified data set, detecting the specified events in the data set. PostgreSQL 9.4
is the underlying database and every operator - including cardinality and overlap
percentage - of both a medium-level and a high-level event model is implemented
via stored procedures in a PostgreSQL DBMS. The individual operators can be
assembled dynamically into different event models.

Fig. 1. Overall architecture

Fig. 2. Semantic sub-layers

2.1 OSN CRAWLER

In an earlier project, an OSN crawler to collect data from Facebook users was
developed [1]. More specifically, this was done with PHP utilizing Facebook

High-Level Automatic Event Detection in a Social Network Context 5

APIs to capture data within secure sessions following the OAuth protocol. The
application was then shared on Facebook and collected, after receiving autho-
rization from users, data related to the interactions of about 1600 users over
a two-year period from 2013 to 2015. The collected data was anonymized by
assigning a random ID to each user and dropping personal details such as age
and gender. Additionally, all participating users were informed that our work
was purely research-related and that there were no commercial uses (falling un-
der Facebook’s privacy policy, which prohibits and punishes unlawful misuse).
In the long run, the aim of the research is to protect users from fraudulent be-
havior. We are aware that technology like this can be misused, but this is true
for security-related methods in general and needs to be discussed in a wider
context [7].

Table 1 shows an example of a log obtained by the OSN crawler from Face-
book (for the sake of readability we have replaced the random user IDs with our
own names in this and the following tables). Table 2 gives an overview of the
atomic user actions (along with their high-level categories) that we captured.
Clearly, the OSN Crawler can also be used for capturing user interactions with
other OSNs, such as Twitter ; in that case, the content of the user tweets can
also be collected and then stored.

Table 1. Example of OSN Log

Action Symbol User Timestamp IP
login FABIO 2017-05-17 11:39:12 192.168.1.88
likes a page FABIO 2017-05-17 11:39:20 192.168.1.88
login SVEN 2017-05-17 11:39:24
message sent FABIO 2017-05-17 11:39:27 192.168.1.88
message received SVEN 2017-05-17 11:39:27
status wall post SVEN 2017-05-17 11:39:30
message sent SVEN 2017-05-17 11:39:40
message received FABIO 2017-05-17 11:39:40 192.168.1.88
logout SVEN 2017-05-17 11:39:42
logout FABIO 2017-05-17 11:39:50 192.168.1.88

2.2 Interval Action Detector

The task of the Interval Action Detector is to assemble individual time-stamped
action symbol with low-level labels into meaningful events described by an inter-
val. In this way, each user session is modeled by means of a sequence of higher
level intervals, rather than with a list of time-stamped low-level action sym-
bols. More specifically, the Interval Action Detector aggregates the results from
the OSN Crawler into medium-level events using medium-level predicates cor-
responding to the categories defined in [3] and shown in Table 2. Additionally,
Table 3 shows the Interval Labeling obtained by processing the OSN Log shown
in Table 1. In order to do that, we utilize interval-based extensions we have
introduced in our earlier work on the detection of high-level events [5, 6]. All

6 F. Persia and S. Helmer

Table 2. Facebook Predicates and related Action Symbols in Facebook logs

Category Atomic Action
login login
status&friends status wall post

friend approved
mobile status update
checkin
status update

messages message received
message sent

photos added picture
tagged in a picture

shares youtube video shared
youtube created story
link app created story
published link
link shared story
video shared story
pictured shared story

like likes a page
logout logout

operators, including the new ones for analyzing social network data, were imple-
mented in PostgreSQL as stored procedures. We do not describe our extensions
in detail, but introduce the concepts as needed (for details of our interval-based
language, see [5, 6]).

The Interval Action Detector works both in an offline mode - where it has
access to a complete (historical) data set - and in an online mode - where it
works similar to a continuous query in a data stream management system, thus
being able to react in real time. In addition, the GUI also allows to broaden
both the category and the atomic action sets (Table 2), as well as to select just
a subsets of the categories to be detected by the Interval Action Detector (by
default, all of them are searched).

Table 3. Example of Interval Labeling
Pred Start End Arg1
session 17-05-17 11:39:12 17-05-17 11:39:50 FABIO
login 17-05-17 11:39:12 17-05-17 11:39:12 FABIO
like 17-05-17 11:39:13 17-05-17 11:39:20 FABIO
messages 17-05-17 11:39:21 17-05-17 11:39:40 FABIO
session 17-05-17 11:39:24 17-05-17 11:39:42 SVEN
login 17-05-17 11:39:24 17-05-17 11:39:24 SVEN
messages 17-05-17 11:39:25 17-05-17 11:39:27 SVEN
status&friends 17-05-17 11:39:28 17-05-17 11:39:30 SVEN
messages 17-05-17 11:39:31 17-05-17 11:39:40 SVEN
logout 17-05-17 11:39:42 17-05-17 11:39:42 SVEN
logout 17-05-17 11:39:50 17-05-17 11:39:50 FABIO

High-Level Automatic Event Detection in a Social Network Context 7

2.3 High-Level Event Detector

The main goal of the high-level event detector is to combine medium-level events
into descriptions of complex events. This is done by putting the intervals asso-
ciated with two or more medium-level events in relation to each other, thus
exploiting the semantic interval relationships defined in [5] and used in ISEQL
[6]. In principle, we have five different operators, here visualized by a small sketch
indicating the relative position of two intervals: left overlap (), during (),
start preceding (), end following (), and before (). All of these rela-
tions also have a reverse counterpart: right overlap (), reverse during (),
reverse start preceding (), reverse end following (), and after ().

The constructs employed by ISEQL are not just simple Allen relationships,
but we have extended and parameterized them to match the specific needs of
event detection. For example, the relation before covers “takes place before”
and “meets”. The parameter δ of the before relation can be used to tune the
desired maximum distance between the intervals, meaning that δ = 0 models
“meets”, all other values model “takes place before”.

We introduced two new constraints – the cardinality and overlap percentage
[10], which allow us to formulate high-level event models in social network en-
vironments more easily, thus also enhancing the expressivity of ISEQL. These
new operators were also integrated into the GUI.

For instance, we can utilize these new operators and constraints to define a
spamming event model. We interpret spamming as sharing something more than
k times (Case 1, Fig. 3) or spending more than p percent of a session with sharing
activities (Case 2, Fig. 4). In order to model and then detect such scenarios, we
need to combine different intervals, each of them corresponding to a medium-
level event. More specifically, for modeling Case 1 we exploit the right cardinality
(k) constraint [10] between “session” and “shares” intervals, which guarantees
that there are at least k “shares” intervals within the same “session”. On the
other hand, for modeling Case 2 we use the left overlap percentage constraint
[10] between “session” and “shares” intervals, which states that at least p percent
of the session was spent by the user sharing something. Fig. 3 and Fig. 4 show
examples of instances that would be classified as spamming: Fig. 3 for k = 3
(Case 1), and Fig. 4 for p = 0.8 (Case 2).

While an experienced user can define high-level events directly in ISEQL,
for an ordinary user this task may be too daunting. With the help of our GUI,
a user is guided through the steps of defining a high-level event. This includes
drawing intervals on a canvas and supplying parameters. In the background, the
system checks the model for consistency, transforms it into a temporal relational
algebra expression, and generates the code in form of PL/pgSQL for the actual
event detection. As an example, Fig. 5 and Fig. 6 depict how the spamming high-
level event (see Fig. 3 and Fig. 4) is entered using the GUI. More specifically,
it is defined as logical disjunction of Case 1 (Figure 3) and Case 2 (Figure 4).
Consequently, by answering some simple questions (Figure 5)5, and drawing the

5 We also provide an online help.

8 F. Persia and S. Helmer

0	 2	 4	 6	 8	 10	 12	 14	 16	

SPAMMING1(p1,1,15)	

session(p1,1,15)	 login(p1,1,1)	 like(p1,2,2)	

shares(p1,3,5)	 like(p1,6,6)	 shares(p1,7,9)	

like(p1,10,10)	 shares(p1,11,14)	 logout(15,15)	

Fig. 3. Spamming - Case 1, k = 3

desired relationships among intervals on a temporal canvas (Figure 6), the user is
able to effectively define a high-level event model. The black intervals in Figure 6
represent combinations of simpler events and are automatically generated by
the system. This high-level event can now be stored, queried, and re-used as
a building block to define more complex events. More details are provided in
Appendix A.

By default, our queries work at a global granularity, looking at all sessions
of all users. However, we can also run queries at a finer granularity, defining
specific temporal intervals for users. We can even analyze a user’s behavior by
investigating and categorizing each of their sessions individually. The session
type that appears most frequently is then used to classify a user. For example,
a user most of whose sessions are marked as inactive - that means that they
are not an instance of any of the searched event models - is classified as a fake
user. In addition, we report some relevant screenshots classified by functionality,
depicting how the overall system actually works6.

Our framework is also flexible enough to enhance queries with data coming
from Facebook graphs, adding further constraints to them. In this way, we can
exploit the network structure of Facebook friendships to carry out the classi-
fication of clusters of users rather than single users. More specifically, we are
interested in determining the category all the friends of a specific user u (i.e.,
his/her neighbors in the graphs) belong to, or extend the search to all users
whose minimum distance from the user u is lower than or at most equal to a
specific threshold d.

6 https://www.dropbox.com/sh/um0yucb8810nrhu/AAAt5kbr9Tsz4moEgghKgxeja?dl=0

High-Level Automatic Event Detection in a Social Network Context 9

0	 2	 4	 6	 8	 10	 12	 14	 16	

SPAMMING1(p2,1,15)	

session(p2,1,15)	 login(p2,1,1)	 shares(p2,2,14)	 logout(p2,15,15)	

Fig. 4. Spamming - Case 2, p = 0.8

2.4 Graphical User Interface (GUI)

As shown in Fig. 2, each of the semantic layers of Fig. 1 consists of a graphical
user interface (GUI), an application core, and a database. Since many of the
framework users may be inexperienced, both in social network analysis and in
relational algebra, it may be non-trivial for them to define tasks and models.
Thus, the GUI plays an important role in helping them to interact effectively with
the framework and to make use of specific functionalities, such as the definition
of a new high-level event model. More details about the functionalities of the
framework and the way to utilize them via the graphical user interfaces are
exhibited in Appendix A.

3 Demo Specifications

For the purpose of our demo, we use two different data sets: the Facebook data
set we already mentioned earlier [1] and a synthetic data set produced by a
generator. The size of the data set and the density of the events (i.e., the number
of events per time unit) can be controlled via parameters by a user. We decided
to use Facebook in our demo, since it is still the world’s most popular social
network; however, the OSN Crawler could potentially work also on other OSNs,
such as Twitter, by using the Twitter APIs with the default access level.

We plan to start the demo by detecting high-level events on one of the above
social data sets in offline mode to illustrate how the event detection works in
principle. This involves identifying events such as different scenarios of potential
spamming in the social log. However, depending on the particular interests of a

10 F. Persia and S. Helmer

Fig. 5. High-Level Event Detector

demo participant we can either focus our attention on one specific layer (OSN
Crawler, Interval Action Detector, and High-Level Event Detector) or carry out
the whole process from the low-level label extraction all the way to the detection
of high-level events. For the online mode, we stream one of the data sets past
the event detector, emitting the atomic events according to their timestamps.

Participants will be able to discover some of the predefined medium-level
events, investigate the interval labeling, or create new medium-level events and
detect them afterwards. On the top-most layer, users can do the same for high-
level events: detecting them and defining new ones.

All the functionality of every layer is accessible via intuitive GUIs that pro-
vide continuous feedback about what is happening in the system. For the interval
action and high-level event detectors, a participant is not only able to define new
events and detect them, but they can also have a closer look at the interval rep-
resentation of events in the form of stored procedures, and define and detect
them on the fly. They can also investigate the global behavior of a user over a
specified temporal interval, thus obtaining the category of the user.

4 Conclusion and Future Work

In this paper, we present a smart and interactive framework for automatic event
detection and user classification in a social network context. More specifically,
the user is able both to easily define high-level event models by a means of a
smart graphical user interface, and to discover their instances in a real data set
containing data dealing with interactions of users with Facebook, as well as in
synthetic data sets.

Future work will be devoted particularly to further enhance the framework
efficiency. In fact, we plan to develop a family of efficient plane-sweeping interval

High-Level Automatic Event Detection in a Social Network Context 11

Fig. 6. High-Level Event Detector - Intervals on a Temporal Canvas

join algorithms that can evaluate the wide range of interval relationships predi-
cates defined in [6], that are broadly exploited by our framework, directly in the
query processing framework of the PostgreSQL DBMS. These predicates also
include the cardinality and overlap percentage operators, that are particularly
useful for modeling high-level events and user categories in a social network con-
text. Additionally, we also plan to improve the framework response time for use
in live data streams. This involves the development and the dissemination of a
specifically designed and developed web application able to capture user inter-
actions with a social network in real time, compatibly with its privacy policy.

Appendix A The Framework Functionalities

In this appendix we take a closer look at the main functionalities provided by the
framework for high-level automatic event detection and user classification. More
specifically, we list them below and give more details in the following sections.

– Detection of Low-Level Annotations (Section A.1).
– Detection of Medium-Level Annotations (Section A.2).
– Detection of High-Level Event Occurrences (Section A.3).
– Detection of User Classifications (Section A.4).
– Automatic High-Level Event Detection (Section A.5).
– Definition of a New Atomic Predicate (Section A.6).
– Definition of a New Medium-Level Predicate (Section A.7).
– Definition of a New High-Level Event Model (Section A.8).

12 F. Persia and S. Helmer

A.1 Detection of Low-Level Annotations

This functionality allows to import all the low-level annotations occurring within
a specified temporal window. So far, they can be imported from two different
sources. These annotations are used as input for further processing steps. The
first one is a real data set containing data related to the interactions of users with
Facebook over a 2-year period, previously collected for [2]. The second one is a
synthetic data set, generated by a specifically designated tool, whose size and the
density of the events (i.e., the number of events per time unit) can be controlled
via parameters by users. However, the system is flexible enough to easily allow in
the future imports from other sources, including live data streams, compatibly
with the related privacy policy.

A.2 Detection of Medium-Level Annotations

This functionality detects the interval labeling corresponding to the captured
OSN Log (Fig. 1). More specifically, Fig. 7 shows the medium-level annotations
corresponding to the OSN Log listed in Table 1. In Fig. 7 we use as source
the synthetically generated data set unibz mentioned in Section A.1) and the
medium-level predicates status&friends, messages, photos, session, shares, like,
logout in offline mode. The collected interval labeling is shown on the right-hand
side of Fig. 7 and can be further processed in order to infer both high-level events
and user classifications.

Fig. 7. Detection of Medium-Level Annotations

High-Level Automatic Event Detection in a Social Network Context 13

A.3 Detection of High-Level Event Occurrences

This functionality detects occurrences of high-level events whose models are
stored in the knowledge base. In this framework the knowledge base of event
models is stored as set of stored procedures in the PostgreSQL database man-
agement system. As shown in Fig. 8, the user simply needs to select the event
to be discovered (SPAM in this case), and the data set to be investigated (unibz
in this case). Clearly, for a data set to be available, it has to be first processed,
i.e., it has to be labeled via interval labeling). The result of the use case shown
in Fig. 8 is an instance of the SPAM event detected for the user FABIO from
11:39:12 to 19:40:00.

Fig. 8. Detection of High-Level Event Occurrences

A.4 Detection of User Classifications

Similarly to the procedure in Section A.3, this functionality allows us to discover
the category to which each OSN user belongs. More specifically, a client inter-
ested in carrying out an OSN user classification has just to specify the following:

– the particular OSN user to be analyzed;

– the time window where he/she wants to classify the selected OSN user;

– the data set taken as reference.

As a result, a specific category is assigned to the OSN user depending on the
classification of his/her sessions (spamming, status&friends, messages, photos,
like, and inactive) that appears most frequently. Thus, the categories to which
the OSN user could belong are respectively Spammer, Interactive with Friends,
Message Sender, Photo Poster, Like Adder, and Fake User. This is due to the
fact that all the defined event models are flexible, so they can be also applied to
classify users themselves, thus working at a lower (user) granularity.

14 F. Persia and S. Helmer

A.5 Automatic High-Level Event Detection

This functionality allows to automatically carry out the overall process described
in Sections A.1, A.2, A.3, and A.4. As a result, the user just needs to specify
all the inputs necessary in the previous sections once, and the whole process
shown in Fig.1 is performed; consequently, the output are the high-level events
and the user classifications satisfying the inserted constraints.

The process can be run in both offline and online modes. For the online mode,
we stream one of the data sets past the event detector, emitting the atomic events
according to their timestamps.

A.6 Definition of a New Atomic Predicate

This functionality allows the user to add another atomic event to the set of
atomic actions listed in Table 2. For instance, the user in the use case shown in
Fig. 9 inserts the atomic action named Interact with Game.

Fig. 9. Detection of High-Level Event Occurrences

A.7 Definition of a New Medium-Level Predicate

Similarly to adding atomic predicates as described in Section A.6, this func-
tionality allows us to insert a new medium-level predicate into the set of cat-
egories listed in Table 2. More specifically, by means of another smart graphi-
cal user interface, the user is able to directly write the PL/pgSQL code of the
new medium-level predicate, also specifying the relationships with the low-level
atomic actions.

A.8 Definition of a New High-Level Event Model

As mentioned in Section 2, this functionality allows a user who is not familiar
with relational algebra to easily define a high-level event model; Fig. 5 and Fig. 6
illustrate an example for using the smart graphical user interface for defining the
Spamming event model.

In order to illustrate the advantages of the user interface, we describe the
procedure for defining a new event model in the following. This is done in a
step-by-step manner, by asking the user for (see Fig. 5):

High-Level Automatic Event Detection in a Social Network Context 15

– the name of the new event (field Event Name);

– the data set he or she would like to explore (from a list of available data
sets) (field Data Set);

– the medium-level predicates (or, as an alternative, already-defined events)
associated with the intervals (operands) that he or she is currently adding
to the global event (fields First Operand, Second Operand);

– optional values for the arguments of the first/second operand in case of a
medium-level predicate (field Argument, close to First/Second Operand); ar-
guments can be easily added by clicking on the Add Argument button;

– the possibility to carry out set operations between the two inserted interval
predicates (field Operation);

– drawing the two intervals (after clicking on the Draw Intervals button); then,
the application core will capture the values of the left and right endpoints of
both intervals (see for instance first and second lines of Fig. 6);

– specifying how often the left/right interval (fields Left/Right Cardinality,
respectively) has to appear in the result set. If the user selects YES, a pop-
up window will ask to select among three options; at least k times (k to be
specified), more than one tuple (*), or exactly one tuple (one) [10]; otherwise,
no further constraints are added;

– specifying the overlap percentage between the two intervals with respect to
the left/right interval (fields Left/Right Overlap Percentage, respectively).
In case the user selects YES, a pop-up window will ask for the overlap
percentage (from 0% to 100%); otherwise, no further constraints are added;

– whether he or she wants to take into account the relationships between the
left/right endpoints (fields Left Side, Right Side);

– the maximum distance between interval endpoints (fields Left/Right Thresh-
old); in case of overlapping events checking whether to take into account the
distance between the left endpoints of the first and second operand or be-
tween the right endpoints of the two operands. In case of non-overlapping
events, a user has to specify whether to take into account the distance be-
tween the right endpoint of the first operand and the left endpoint of the
second operand or between the left endpoint of the first operand and the
right endpoint of the second operand. Depending on the information pro-
vided by the user, the application core infers the specific operator that will
be applied.

– the optional additional constraints between the first and second interval he
or she would like to add, starting from the partial result set (clicking on Add
EC, close to the External Conditions field, and then allowing the addition
of constraints via a mask);

– the fields he or she would like to project with reference to the current result
set (field Field); the user just needs to select the fields to be projected, and
click on Add i-th Field ;

– whether he or she wants to add more intervals to the complex event he or she
is defining (field Add a new Sub-Event); in that case, the process is repeated
starting from the third bullet point;

16 F. Persia and S. Helmer

– whether he or she wants to store the event model as a PL/pgSQL procedure
(field Storing Procedure).

After each step the application core checks the consistency of the input. At
the end of the procedure, a summary with the retrieved instances, if any, will be
visible to the user.

References

1. Amato, F., Castiglione, A., De Santo, A., Moscato, V., Picariello, A., Persia, F.,
Sperli, G.: Recognizing human behaviours in online social networks. Computers &
Security 74, 355–370 (2018)

2. Amato, F., De Santo, A., Moscato, V., Persia, F., Picariello, A.: Detecting un-
explained human behaviors in social networks. In: Proceedings - 2014 IEEE In-
ternational Conference on Semantic Computing (ICSC 2014), pp. 143–150. IEEE,
Newport Beach, CA, USA (2014)

3. Benevenuto, F., Rodrigues, T., Cha, M., Almeida, V.: Characterizing user navigation
and interactions in online social networks. Information Sciences 195, 1–24 (2012)

4. Dignös, A., Böhlen, M., Gamper, J.: Overlap interval partition join. In: Interna-
tional Conference on Management of Data, SIGMOD 2014, pp. 1459–1470. ACM,
Snowbird, UT, USA (2014)

5. Helmer, S., Persia, F.: High-Level Surveillance Event Detection Using an Interval-
Based Query Language. In: Proceedings - 2016 IEEE International Conference on
Semantic Computing (ICSC 2016), pp. 39–46. IEEE, Laguna Hills, CA, USA (2016)

6. Helmer, S., Persia, F.: ISEQL: an Interval-based Surveillance Event Query Lan-
guage. Int. J. Multimed. Data Eng. Manag. (IJMDEM) 7(4), 1–21 (2016)

7. Irwin, A. S. M.: Double-Edged Sword: Dual-Purpose Cyber Security Methods. In:
Cyber Weaponry: Issues and Implications of Digital Arms. pp. 101–112, Springer
(2018)

8. Persia, F., Bettini, F., Helmer, S.: An Interactive Framework for Video Surveillance
Event Detection and Modeling. In: Proceedings of the 2017 ACM on Conference
on Information and Knowledge Management (CIKM 2017), pp. 2515–2518. ACM,
Singapore, Singapore (2017)

9. Persia, F., Bettini, F., Helmer, S.: Labeling the Frames of a Video Stream with
Interval Events. In: Proceedings - 2017 IEEE International Conference on Semantic
Computing (ICSC 2017), pp. 204–211. IEEE, San Diego, CA, USA (2017)

10. Persia, F., Helmer, S.: A Framework for High-Level Event Detection in a Social
Network Context Via an Extension of ISEQL. In: Proceedings - 2018 IEEE Interna-
tional Conference on Semantic Computing (ICSC 2018), pp. 140–147. IEEE, Laguna
Hills, CA, USA (2018)

11. Piatov, D., Helmer, S., Dignös, A.: An interval join optimized for modern hardware.
In: Proceedings - 2016 IEEE 32nd International Conference on Data Engineering
(ICDE), pp. 1098–1109. IEEE, Helsinki, Finland (2016)

12. Schneider, F., Feldmann, A., Krishnamurthy, B., Willinger, W.: Understanding
Online Social Network Usage from a Network Perspective. In: Proceedings of the
9th ACM SIGCOMM Conference on Internet Measurement, pp. 35–48. ACM, New
York, NY, USA (2009)

