
Conceptual Abstraction of Attack Graphs -
a Use Case of securiCAD?

Xinyue Mao1, Mathias Ekstedt1, Engla Ling1, Erik Ringdahl2, and Robert
Lagerström1

1 KTH Royal Institute of Technology, Sweden
{xinyuem, mekstedt, englal, robertl}@kth.se

2 Foreseeti AB, Sweden
erik.ringdahl@foreseeti.com

Abstract. Attack graphs quickly become large and challenging to un-
derstand and overview. As a means to ease this burden this paper presents
an approach to introduce conceptual hierarchies of attack graphs. In this
approach several attack steps are aggregated into abstract attack steps
that can be given more comprehensive names. With such abstract at-
tack graphs, it is possible to drill down, in several steps, to gain more
granularity, and to move back up. The approach has been applied to the
attack graphs generated by the cyber threat modeling tool securiCAD.

Keywords: Attack Graph · Conceptual Modeling · Cognitive Simplifi-
cation · securiCAD

1 Introduction

The complexity and size of IT systems are growing and as a result so are the
attack graphs that represents possible attacks against them. It is important to
make sure that the attack graphs are useful and easy to interpret even as they
grow. This short paper presents a solution to the problem of visualizing large
attack graphs by using abstractions.

This work was driven by a need to simplify the attack graphs generated in
the attack simulation tool securiCAD [2]. In securiCAD attack graphs are gen-
erated using a fixed attack step library and graph generation logic encoded in
a domain specific language. The visualization of the generated graphs follows
that same terminology of the semantic level of the library. As this language is
quite extensive the generated attack graphs quickly become complex and diffi-
cult to grasp, as seen for example in Figure 1. This paper describes a solution
to generate abstracted visualizations of attack graphs with two objectives: 1)
the abstraction should be formally sound and reversible, and 2) the abstractions
should be understandable and make sense to the users of the attack graph. The

? This work has received funding from the Swedish Civil Contingencies Agency
through the research centre Resilient Information and Control Systems (RICS) as
well as the SweGRIDS competence center.



2 X. Mao et al.

the paper contributes both with an approach to form visually simplified attack
graphs particularly from asset-based attack graph formalisms, as well as a case
study on the securiCAD tool where the approach was applied. The approach is
limited to simplifying already generated attack graphs. Consequently, the ques-
tion of the correctness of these attack graphs or the computational challenges of
computing them is outside the scope of this paper.

Fig. 1. An example of a visually complex attack graph in securiCAD

2 Related Work

The problem of making information more accessible in complicated and large
attack graphs can be solved by several different methods as outlined in the at-
tack graph taxonomy by Kaynar [8]. One method of simplifying is, for example,
hierarchical division. In our solution the hierarchical division is derived from the



Conceptual Abstraction of Attack Graphs - a Use Case of securiCAD 3

securiCAD syntax. In the tool CyGraph [14], which uses multiple data sources to
construct an attack graph, the different data sources are used as layers. The lay-
ers are, for instance, the network infrastructure layer and the cyber threats layer.
Other research has based the division on attribute values or the connectedness
of the attack graph [15]. Another example of division is HARM, a hierarchical
attack representation model [4]. HARM divides the graph in two hierarchical
levels, the network and the vulnerability levels.

An alternative solution to simplify attack graphs is to aggregate parts of
the graph. The aggregation can be achieved by grouping the attack steps or
network objects [9]. However, this work was presented as a suggested approach
of reducing the complexity but did not present a method. The approach was also
intended to reduce the complexity of generating graphs, rather than presenting
them. Please note that, in this paper, we do not aim to reduce the complexity
of graph generation. This paper is concerned with simplifying attack graphs’
representation. Homer et al. presented another approach to aggregation where
they remove attack steps that they consider ”useless” [3]. Their definition of
”useless” is that the attack step is not necessary to understand the security
vulnerability.

The Network Security Planning Architecture (NetSPA) uses a method of
pruning to simplify the representation of an attack graph [1]. The user can prune
the attack graph by choosing a specific goal state and only visualize the attack
steps that ends with that specific state. This method of pruning an attack graph
has not been implemented in the solution presented in this paper.

A common denominator for some of the identified related work is that the
aggregation is performed according to fixed rules built upon the specific attack
graph elements. In our work we present a solution for building aggregation pat-
terns (that can be changed over time) as well as a specific set of patterns for the
securiCAD tool.

The patterns that are constructed in our work are named according to a visu-
alization vocabulary. The intention of these patterns is to align with established
terminology. Examples of such resources are MITRE’s Common Attack Pattern
Enumeration and Classification (CAPEC) [13] and ATT&CK matrix [12]. How-
ever, in our work a bespoke vocabulary was developed matching the securiCAD
tool.

There are methods of reducing the complexity of graphs’ visual represen-
tations in ways not used in the solution presented in this paper. By working
with for example different thickness or colors of lines, it is possible to add more
information to the graph without adding more items [10].

Finally, there are methods for reducing attack graph complexity for other
reasons than visualization. These reasons can be, for instance, to reduce com-
putational complexity as seen in the survey by Hong et al. [5]. However, these
related works are not included because they fall out of scope of this paper.



4 X. Mao et al.

3 securiLang

The securiCAD tool [2] is generating its attack graphs according to the logic of
a domain specific language called securiLang. In brief the securiLang consists of
Assets (e.g. Network, Host, Service, Data flow) that can have Associations

to each other (e.g. a Host can either Root execute or User execute a Service).
To Assets there are Attack steps associated (e.g. a Data flow can be
Eavesdropped, Replayed, or DoSed). In addition, Assets also have Defenses

associated. However, this paper is only looking at attack graphs, not the full
defense graphs, so they are not further discussed here. The full list of assets and
their associated attack steps are presented in Appendix A.

Furthermore, securiLang contains rules for how attack graphs are generated
when instance models are built following the language. Attack steps have po-
tential parent and child steps, depending on how the instance models is con-
structed. E.g. Figure 2 demonstrates the relation between asset Access Control

and its attack step AccessControl.Access. A potential parent to this step is
Host.UserAccess, however this is only true if the Access Control asset is hav-
ing an Authorization association to the Host asset. If the Access Control

Authorizes a Service instead it will be the Service.Connect that leads to
AccessControl.Access, and so on. In this example AccessControl.Access

only has child attack steps located at the Access Control asset.

Fig. 2. An example of Access Control showing the association of an attack step

The full logic in terms of association traversal and OR/AND attack step
dependencies are omitted here to avoid complexity unnecessary for the purpose
of the paper. Furthermore, the securiCAD tool is conducting probabilistic cal-
culations of the attack graphs and aggregates a time-to-compromise value over
all possible attack paths enabled by an instance model which quickly leads to a
myriad of attack vectors. However, these dimensions of the attack graph gener-
ation and calculation is not discussed here since the attack graph aggregation
suggested in this paper follows the same structure for all branches of an attack
graph. In the next chapter we will go into the abstraction mechanism.



Conceptual Abstraction of Attack Graphs - a Use Case of securiCAD 5

4 Attack Graph Abstraction

Our abstraction mechanism addresses attack graph languages based on relational
models following our previous work such as [6], [16] and [7]. The aggregation
approach is illustrated in the conceptual model in Figure 3.

The original attack graph language is depicted in the yellow classes. We
consider this the level 0. From the meta model of this language we assume
three things; that it includes an Attack Step class, an Asset class, and an
Association relating the two classes. This is true for our previous work, but the
intention is to leave as few requirements on the original language as possible3.
Not strictly needed to apply the approach, but later used in our use case for
convenience, the Figure also illustrates that Assets can have relationships

between each other. In the original language these relationships are however
instantiated so that e.g. a Host Asset executes a Client Asset.

On top of this original language we introduce two new classes; the Abstract

Attack Step and the Abstract Asset. The purpose of the former class is to en-
able aggregation of Attack Steps and Abstract Attack Steps in leveled hier-
archies. Thus we also introduce an Aggregation relationship between Abstract

Attack Steps and Attack Steps as well as a self reference for Abstract Attack

Steps. Here we follow the standard semantics of aggregation, for instance used
in UML, where the aggregator is nothing more than, and cannot exist without,
its constituents. More precisely, we introduce two types of aggregations (not
illustrated separately in the Figure to avoid clutter); Mandatory Aggregation

and Optional Aggregation since not always are all possible sub steps present
in the illustrated attack graph4.

In order to create the aggregation hierarchies, we introduce a Level variable.
We stipulate that the original language is level 0 and then for every introduced
aggregation the Level is increased. However, we do not restrict aggregation so
that all constituents need to be of the same Level and consequently the Level

value has to be determined by the highest constituent Level. The aggregator
Level must be increased with at least 1 but we also allow to add any (natural)
number in order for the aggregation designer to build ”conceptually even” lay-
ers. Similarly to the original language we also stipulate that Abstract Attack

Steps must have an Association to an Asset or an Abstract Asset. With
the Abstract Asset we want to enable the possibility to associate Abstract

Attack Steps with any type of asset that is deemed useful. And just as we as-
sume that Attack Steps and Assets come with sort of Names (or identifier) from
the original language, also the Abstract Attack Steps and Abstract Assets

are given Names.

Given these rules for abstracting attack graphs there are many patterns imag-
inable for how this can be done. In the case study presented in this paper mainly

3 Obviously the exact naming of the classes and their relationship is not relevant.
4 This could be due to the attack steps being aggregated by an OR attack step, but it

could also be that not all attack vectors are displayed at the same time. In securiCAD
for instance only highly probable attack vectors are illustrated.



6 X. Mao et al.

Fig. 3. Attack graph abstraction overview

two patterns have been used. Firstly, aggregation of a fixed series of parent/child
attack steps following on each other according to the logic of the original lan-
guage. An example of such a case is the one illustrated in in Figure 2. Secondly, we
have based aggregations on the Asset they are Associated with. An Abstract

Attack Step is defined that represents a full compromise of the Asset. Here
we want to aggregate all (Abstract) Attack Steps that relate to this par-
ticular Asset. This pattern allows for conceptually organizing the Assets into
the layers, so that one Asset’s full compromise Abstract Attack Step is then
aggregated into another Asset’s full compromise Abstract Attack Step.

5 Abstracting securiLang

Above we have presented the general mechanisms devised for abstracting model
based attack graphs. We will now move on to describing a suggested abstraction
for securiLang 5. In this work we have devised six abstraction levels, three attack
step based abstractions(Level 1-3) and three asset based abstractions(Level 4-6).

For each level of abstraction, we merge the original attack steps into one
abstracted step according to the patterns introduced in the last section. All
securiLang abstractions made are found in Appendix B. To illustrate the work

5 The work is based on the securiLang version contained in securiCAD v1.4.



Conceptual Abstraction of Attack Graphs - a Use Case of securiCAD 7

we take Exploit vulnerabilities and compromise Client as an example to
explain how the abstracting operation works. Table 1 contains a snippet from
the full table in Appendix B.

Original Attack Steps 1st Level 2nd Level 3rd Level

Client.
FindExploit

O Find exploit
Exploit

vulnerabilities
and compromise

Client

Client.
DeployExploit

O Deploy exploit
Client.

BypassIDS
Client.

BypassAntiMalware
Client.

Compromise
O

Compromise
Client

Table 1. Abstraction of attack steps in asset Client

The ’O’ in Table 1 means that in this level, all the abstracted steps remain
the same with former level. For example, the ’O’ in the first line of Figure 1
means the same with the name in former level, in this case, this ’O’ equals to
Client.FindExploit. At the second level, the single steps are translated to
Find exploit and Compromise client, while the three steps in the middle are
grouped into Deploy exploit. Then in the third level, the abstracted steps in the
second level can be merged into Exploit vulnerabilities and compromise

Client. Figure 4 illustrates the abstraction in Table 1 graphically.

Fig. 4. Abstracted attack step of Access Control from original attack path to Level 3

Semantically Find exploit denotes that attacker is able to find an exploit
to use on a Client. Deploy exploit means that the deployment of found and



8 X. Mao et al.

Fig. 5. An example of an abstracted attack graph in securiCAD on Level 4

developed exploits for the Client’s Software Product. After a successfully exe-
cuted exploit is deployed, bypassing some protection mechanisms, the Client is
Compromised. When making the higher level abstractions we want the terminol-
ogy to be as intuitive and self explaining as possible, in this case exploit can be



Conceptual Abstraction of Attack Graphs - a Use Case of securiCAD 9

explained as taking advantages of a bug or a vulnerability, which is not captured
in the original securiLang terminology. Thus, in this case level 3 abstract attack
step name was chosen as Exploit vulnerabilities and compromise Client.
On level 2 we find examples of the use of the same name as used in the Level
0 language, and in two instances the semantics is kept, while in one case the
semantics is changed (expanded so that also defense bypassing is included in the
Deploy exploit abstract attack step).

Altogether we have done four asset based abstractions; Client Compromise

and Service Compromise are found on Level 4, Host Compromise on Level 5,
and Network Compromise is on the 6th and final Level. In securiLang these four
assets; Client, Service, Host, and Network, each attack steps called Compromise,
thus it was straight forward to develop new new Abstract Attack Step with
the same name as the original language new Attack Step to create these levels.

As an illustration of the end result of this work it has enabled us to simplify
the visually complex attack graph in Figure 1 to an attack graph as seen in
Figure 5, on Level 4.

6 Evaluating the securiLang Abstraction

In order to evaluate our design of the securiLang abstraction we were addressing
the following quality criteria (relating to our second objective in the Introduc-
tion):

1. The vocabulary chosen as representation provides associations that accu-
rately reflects the attack steps on level 0.

2. Each of the representations are made so that the levels feels conceptually
even in terms of level of perceived detail.

3. The design of the six levels are perceived as intuitive.

The evaluation was made in two phases; firstly two senior security experts that
have previously worked with securiCAD (but not involved in the abstraction
project) were interviewed and secondly a survey was sent out to cyber security
students that had not encountered the tool.

6.1 The interviews

For the interviews, we used a questionnaire where the respondents were asked
to rate statements and answer questions. To address the first evaluation crite-
rion statements such as “Root login to Host well describes the original attack
process?” were posed with answering options on a five-level scale from Strongly
disagree to Strongly agree. For the second criterion, questions such as “Do you
agree that Access and Root login can be merged into one attack step in the 1st
level?” were posed with the same answering option. Both statements were fol-
lowed by an open question to allow the interviewee to comment freely on their
answer.



10 X. Mao et al.

In general, the two respondents gave the original design a good evaluation.
However, several smaller changes were suggested and the model presented in
this paper is the refined version after this input. For instance, Use legitimate

access used to be called Extract password from user, which represented
the two attack steps ExtractFromUser and Compromise. Another example is
FindExploit and DeployExploit that were originally grouped together, while
BypassIDS, BypassAntiMalware and Compromise were aggregated. The respon-
dents instead suggested that DeployExploit, BypassIDS and BypassAntiMalware

are grouped into one abstracted step instead.

6.2 The survey

An online survey was created where participants rated the attack steps rep-
resentations from strongly disagree to strongly agree. Altogether 24 students
with major in information technology and at least basic skills in cyber security
participated.

Fig. 6. Results of survey of single abstracted representation with corresponding num-
bers

Related to our first and third criteria, here the participants rated eleven
selected attack step abstractions based on their intuitive perception and under-
standing, ranging from strongly disagree to strongly agree. Figure 6 shows the
result of the survey for the different attack step abstractions. All representa-
tions except for Find exploit and Deploy exploit were rated with Strongly
agree as the most popular choice. Overall only few disagreed and no participant
chose Strongly disagree. When observing the results for Agree and Not sure,



Conceptual Abstraction of Attack Graphs - a Use Case of securiCAD 11

the number of people in these categories are evenly distributed among all the
representations. Thus, it is concluded that each representation gets almost the
consistent recognized level. For all representations, approximately 90% of the
participants have chosen agree or strongly agree. This shows that most people
agree with attack steps representations, believing they can well describe the orig-
inal attack process and provide an easily understandable interactive view, which
could meet the first and third criterion.

7 Future Work

This project reports on early and exploratory work. Consequently it is natural
that several avenues for future work has been identified from this project. From
a practical point of view making the abstraction a fully maintainable and config-
urable capability is the most important for further adoption of the idea. First of
all, securiLang (and any other asset based attack graph language) evolves over
time with new types of attacks and assets, so likely the attack aggregations also
need to be updated. Moreover, securiCAD supports several different languages
and each would need to have its language specific attack aggregations.

We can also envision that one would like to abstract the same attack graph
according to different patterns depending on who is looking at it and for what
purposes. In the case study presented here the aggregation was driven mainly
by the experiences at the tool vendor of some attack path segments had been
found difficult to explain to tool users in combination with some gut feeling
of nice-to-have features. The aggregation could also be addressed e.g. from an
alignment point of view where the aggregations are devised to map some more
well established terminology such as Mitre’s CAPEC [13] and ATT&CK [12],
or Lockheed Martin’s Kill Chain concept. Thus ongoing work is now to develop
a configuration structure that enables to define the conceptual attack graph
abstractions for any language in a format that is both readable by securiCAD
and easy to expand and understand as a language designer. As of now, the
configuration structure is in essence a single JSON file that for each level of
abstraction defines a set of rules which are applied sequentially on the attack
graph, such as the below code snippet.

Level 2: {

Client: [

{

collect: [

Client.DeployExploit,

Client.BypassIDS,

Client.BypassAntiMalware

],

replacement: {

class: Client,

attackstep: Deploy exploit

}



12 X. Mao et al.

}

]

}

From a more theoretical point of view, formalizing the aggregation approach
suggested here into a (meta) language with formal semantics is a natural next
step. Devising and structuring design patterns for aggregation can further be of
interest. In addition, adding configuration features for syntax and form editing
(coloring, sizing, etc.) is likely to improve attack graph readability significantly.

8 Conclusion

The purpose of this work was to address the problem of attack graphs that are
difficult to understand as they grow large and complex. Specifically, the attack
graphs generated by the tool securiCAD constituted a case study. An overall
approach was suggested and applied in the case study. The results are generally
positive. Firstly the attack graph abstraction approach was found viable and
useful for conducting the case study. Secondly, the abstraction patterns devel-
oped in the case study were also promising. Even though the evaluation of the
case study patterns was rather weak from a methodological standpoint at least
all indications suggest that the patterns are fit for its intended purposes. Also
the intuition at the case study company is that this is important correct enough
to further develop the idea and implement support for it in the securiCAD tool.
But to come to a more universal conclusion on the appropriateness of these
particular aggregation patterns would obviously require more validation studies.

And for the generic conceptual abstraction approach per se has only been
tested with a single case study. Obviously this is far from a full validation of
the approach. Analytically we can however conclude that the approach is pri-
marily suitable for use cases where the attack graphs we want to abstract follow
predictable patterns since aggregation patterns need to be created manually.

Furthermore, the case study does not make use of Abstract Assets class.
To use introduce for instance highly abstract assets as means for abstraction
seems however reasonable. E.g. for large ICT infrastructures it could be inter-
esting to. introduce an Abstract Asset called Zone onto which one or several
Network.compromise could be aggregated into an Abstract Attack Step la-
belled Zone.compromise.

This paper is based on and extends the work presented in the Master thesis
by Mao [11].

References

1. Michael Lyle Artz. NetSPA: A Network Security Planning Architecture. Mas-
sachusetts Institute of Technology, Department of Electrical Engineering and Com-
puter Science, 2019.



Conceptual Abstraction of Attack Graphs - a Use Case of securiCAD 13

2. Mathias Ekstedt, Pontus Johnson, Robert Lagerström, Dan Gorton, Joakim
Nydrén, and Khurram Shahzad. Securicad by foreseeti: A cad tool for enter-
prise cyber security management. In 2015 IEEE 19th International Enterprise
Distributed Object Computing Workshop, pages 152–155. IEEE, 2015.

3. John Homer, Ashok Varikuti, Xinming Ou, and Miles A. McQueen. Improving
attack graph visualization through data reduction and attack grouping. In Visu-
alization for Computer Security, pages 68–79. Springer Berlin Heidelberg, 2008.

4. Jin Hong and Dan Kim. Harms: Hierarchical attack representation models for net-
work security analysis. Australian Information Security Management Conference,
12 2012.

5. Jin B. Hong, Dong Seong Kim, Chun Jen Chung, and Dijiang Huang. A survey
on the usability and practical applications of graphical security models. Comput.
Sci. Rev., 26(C):1–16, November 2017.

6. Pontus Johnson, Robert Lagerström, and Mathias Ekstedt. A meta language for
threat modeling and attack simulations. In Proceedings of the 13th International
Conference on Availability, Reliability and Security, page 38. ACM, 2018.

7. Pontus Johnson, Alexandre Vernotte, Mathias Ekstedt, and Robert Lagerstrm.
pwnpr3d: An attack-graph-driven probabilistic threat-modeling approach. In 2016
11th International Conference on Availability, Reliability and Security (ARES),
pages 278–283, 2016.

8. Kerem Kaynar. A taxonomy for attack graph generation and usage in network
security. Journal of Information Security and Applications, 29:27 – 56, 2016.

9. Igor Kotenko and Mikhail Stepashkin. Attack graph based evaluation of network
security. In Communications and Multimedia Security, pages 216–227. Springer
Berlin Heidelberg, 2006.

10. Eric Li, Jeroen Barendse, Frederic Brodbeck, and Axel Tanner. From a to z:
Developing a visual vocabulary for information security threat visualisation. In
Graphical Models for Security, pages 102–118. Springer International Publishing,
2016.

11. Xinyue Mao. Visualization and natural language representation of simulated cyber
attacks. Master’s thesis, KTH Royal Institute of Technology, 2018.

12. MITRE. About ATT&CK. https://attack.mitre.org/, 2018. Accessed 2019-
04-01.

13. MITRE. About CAPEC. https://capec.mitre.org/about/index.html, 2018.
Accessed 2019-03-25.

14. Steven Noel, Eric Harley, Kam Him Tam, Michael Limiero, and Matthew Share.
Chapter 4 - cygraph: Graph-based analytics and visualization for cybersecurity. In
Cognitive Computing: Theory and Applications, volume 35 of Handbook of Statis-
tics, pages 117 – 167. Elsevier, 2016.

15. Steven Noel and Sushil Jajodia. Managing attack graph complexity through visual
hierarchical aggregation. In Proceedings of the 2004 ACM Workshop on Visualiza-
tion and Data Mining for Computer Security, pages 109–118. ACM, 2004.

16. Teodor Sommestad, Mathias Ekstedt, and Hannes Holm. The cyber security mod-
eling language: A tool for assessing the vulnerability of enterprise system architec-
tures. IEEE Systems Journal, 7(3):363–373, 2013.



14 X. Mao et al.

A Appendix
securiLang assets and attack steps

Assets Attack steps

AccessControl Access, ExtractPasswordRepository, NonRootLogin, RootLogin

Client
BypassAntiMalware, BypassIDS, Compromise,
DenialOfService, DeployExploit, FindExploit, UserAccess

Dataflow
Access, DenialOfService, Eavesdrop, ManInTheMiddle,
Replay, Request, Respond

Datastore Delete, Read, Write

Firewall Compromise, DiscoverEntrance

Host
ARPCachePoisoning, BypassAntiMalware, BypassIDS,
Compromise, DenialOfService, DeployExploit, FindExploit,
PhysicalAccess, PrivilegeEscalation, USBAccess, UserAccess

Keystore Delete, Read

Network
ARPCachePoisoning, Compromise, DNSSpoof,
DenialOfService

Router Compromise, DenialOfService, Forwarding

Service
ApplicationLogin, BypassAntiMalware, BypassIDS,
Compromise, Connect, DenialOfService, DeployExploit,
FindExploit, NonRootShellLogin, RootShellLogin, UserAccess

SofwareProduct

DevelopExploitForPublicPatchableVulnerability,
DevelopExploitForPublicUnpatchableVulnerability,
DevelopZeroDay, FindExploitForPublicPatchableVulnerability,
FindExploitForPublicUnpatchableVulnerability,
FindPublicPatchableVulnerability,
FindPublicUnpatchableVulnerability

UserAccount Compromise, ExtractFromUser, GuessOffline, GuessOnline

WebApplication

BypassWAFViaCI, BypassWAFViaRFI,
BypassWAFViaSQLInjection, BypassWAFViaXSS,
DiscoverNewVulnerability, ExploitCommandInjection,
ExploitRFI, ExploitSQLInjection, ExploitXS

securiLang is further described at https://community.securicad.com/securilang-
reference-manual/



Conceptual Abstraction of Attack Graphs - a Use Case of securiCAD 15

B Appendix
Abstraction patterns of securiLang



16 X. Mao et al.



Conceptual Abstraction of Attack Graphs - a Use Case of securiCAD 17


