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Abstract. Attack trees are widely used for security modeling and risk
analysis. Classically, an attack tree combines possible actions of the at-
tacker into attacks. In most existing approaches, an attack tree represents
generic ways of attacking a system, but without taking any specific sys-
tem or its configuration into account. This means that such a generic
attack tree may contain attacks that are not applicable to the analyzed
system, and also that a given system could enable some attacks that the
attack tree did not capture.
To overcome this problem, we extend the attack tree setting with a model
of the analyzed system, allowing us to introduce precise path semantics
of an attack tree and to define missing attacks. We investigate the miss-
ing attack existence problem and show how to solve it by calls to the
NP oracle that answers the trace attack tree membership problem; the
latter problem has been implemented and is available as an open source
prototype.
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1 Introduction

Attack trees are well-known graphical models for security analysis. They were
introduced by Schneier twenty years ago [23] and since then they have been
successfully adopted by industry [7,19,1,11,8], as well as gained a lot of popularity
within the scientific security community [15,10]. The hierarchical structure of
an attack tree refines the goal of an attacker (depicted by the root node) into
simpler sub-goals, using disjunctive and conjunctive nodes. At the bottom of
the tree we find the leaves that correspond to actions that the attacker needs to
perform to reach his goal. Combinations of such actions form attacks that lead
to achieving the root goal of the tree. Numerous formalizations of attacks in the
context of attack trees have been proposed: multisets [18], sets [16], models of
Boolean functions [14], special types of graphs [13], paths or traces [3,2], etc. In
this paper, we model possible attacks as sequences of the attacker’s actions.

A lot of research effort has recently been put into the problem of generation
of attack trees [25,9,21,12,3]. Regardless of whether such generation is manual
or automated, two main approaches can be distinguished: a generic approach,
where the constructed attack tree covers a large number of well-known, generic
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attacks, applicable to most potential attackers; and a specific approach, where an
attack tree is tailored to a specific system and/or to a specific attacker profile.
In the first case, the creation process may benefit from the usage of attack tree
libraries or commonly-known attack patterns, such as [19], whereas in the second
case, a suitable attack tree is usually derived from a formal model of the analyzed
system, e.g., [12,20,21]. Unfortunately, both approaches have their limitations.
On the one hand, attack trees created using the generic approach may contain
attacks that are irrelevant for the analysis of a given system – that we call extra
attacks. On the other hand, in the case of the specific approach, the modeler can
easily miss some attacks, for instance because he is not aware of particularities
of the system. In this case, we talk about missing attacks. In both – generic and
specific – approaches, it is also possible that the tree contains some weird attacks
or misses some other ones due to an inappropriate expertise of the modeler, or
because the formal model of the analyzed system is too coarse or too abstract.

We argue that, in order to perform a decent security analysis, an attack
tree model needs to be coupled with the formal model of the analyzed system.
Indeed, the former represents how the system can be attacked, whereas the latter
describes how this system actually looks like. Taking both models into account
simultaneously provides an elegant way of formally verifying the relevance of an
attack tree w.r.t. the system, in terms of extra and missing attacks. The presence
of the system model also allows us to extend the attack tree formalism with weak
refinement operators that are used to refine goals in a more flexible manner. The
specific contributions of this work are the following:

– We accompany an attack tree with an explicit modeling of the analyzed
system, using a labeled transition system, which allows us to propose a new
semantics for attack trees – path semantics – formalizing attacks in terms
of sequences of attacker’s actions corresponding to paths in the analyzed
system. The use of this model of the system automatically discards extra
attacks in the semantics.

– We extend OR-AND-SAND attack trees with the weak conjunctive (wAND) and
weak sequential (wSAND) operators, allowing an expert to model collections
of actions that are necessary but might not be sufficient for the attacker to
reach his goal.

– We formally define two decision problems: trace attack tree membership
(TATM) and missing attack existence (MAE). The first one focuses on whether
a given attack is covered by an attack tree; the second, whether the tree con-
tains any missing attacks w.r.t. the considered system.

– We provide algorithms solving the two problems. We prove that TATM is
NP-complete, and that MAE for trees with no weak operators is in the second
level of the polynomial hierarchy [24] resorting to the NP oracle for TATM.

This paper is structured as follows. Section 2 describes the relevant existing
work. In Section 3, we present the background knowledge on attack trees that is
necessary to understand the framework proposed in this article. We extend the
attack tree model with a formalization of the system under study in Section 4.
We introduce the concept of missing attacks, study the missing attack existence
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decision problem, and keep on with the trace membership problem in Section 5.
In this section we also briefly describe the tool that we implemented to auto-
mate the solving of the TATM problem. We conclude and discuss future research
directions in Section 6.

2 Related work

Although the attack tree literature is very abundant [15,10], only two lines of
research involve an explicit modeling of the analyzed system.

The first direction of work combining attack trees and a system model con-
centrates on attack tree correctness. In [2] and [4], a transition system whose
states are labeled with propositions that express possible configurations of the
underlying real-life system is employed. The authors define a novel kind of at-
tack trees, called state-based attack trees, where the attacker’s goals, i.e., nodes’
labels, are expressed with two propositions representing the initial configura-
tion, from which the attacker starts his attack, and a final configuration that
the attacker aims at. Since the system model and the attack tree use a common
language of propositions, it is possible to identify the set of paths in the system
that allow the attacker to reach the goal of a specific node, i.e., to go from its
initial to its final configuration. By using appropriate combination operators,
similar to the sequential and parallel composition of paths used it this work, one
can thus check whether an attack tree represents at least one valid attack in the
analyzed system (non-emptiness problem [4]), as well as verify the quality of a
node’s refinement w.r.t. the system [2], i.e., check whether all paths satisfying the
goal of the parent node also satisfy the combination of the goals of its children
(over-match), and vice-versa (under-match).

The concept of path semantics used in the current work is very similar to the
one from [2] and [4]. The main difference consists in the way in which attack tree
node labels are formalized: goals over propositions, in the state-based approach,
versus attacker’s actions and their combinations, in the present work.

Supporting attack tree generation is the second research direction that in-
volves reasoning about a particular system in the context of attack trees. The
objective of [12] is to create an attack tree describing how a given socio-technical
system, e.g., a company, can be attacked. The system is represented with a graph-
based model capturing its locations, actors and processes involved, and relevant
assets. Conditions, called policies, define which actions can be performed by
which actor or process, and how. An attacker’s goal is expressed in terms of
policy invalidation: actors, assets, and locations necessary to enact a policy are
determined, and the corresponding path in the system model is identified. An
algorithm recursively constructs an attack tree for every policy, and then com-
bines them using an AND node to get a tree representing a single path. Finally,
the trees corresponding to particular paths are combined under a common OR

node, resulting in a tree invalidating the initial policy.
In [20] and [21], the authors address the problem of generating an attack tree

for a physical system formalized using a domain specific language. The system
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description is compiled into a symbolic transition system, and the reachability
analysis, based on model checking, is performed to generate attack scenarios
expressed as sequences of elementary actions of the attacker. By combining these
conjunctive scenarios using an OR node, a flat attack tree is obtained. Parsing
and merging are then used to factorize the tree and obtain a more usable and
efficient representation.

In [25], a system is modeled with the help of a particular type of process
algebra, called value-passing quality calculus. Given a target location or an asset
of interest in the system, an AND-OR attack tree representing how the attacker
may reach the location or acquire the asset is constructed using SAT solving.

An explicit modeling of the system has also been exploited in [3], where
a state-based attack tree is incrementally derived from a quantitative analysis
of the transition system representing the real-life system to be analyzed. First,
optimal paths, e.g., those corresponding to the cheapest or the fastest attacks,
are determined in the transition system, and they are then used to identify
leaves that contribute to these optimal attacks and could therefore be interesting
candidates for further refinement.

The work described in [9] uses a similar system model as [3]. The states
of the transition system are represented by the set of predicates valid in this
state. The objective is to generate an attack tree based on a set of successful
traces in the transition system, i.e., traces that start from the initial state and
end in any state containing a desired set of predicates. The particularity of the
obtained tree is that it is refinement-aware, i.e., that its nodes correspond to
the meaningful levels of abstraction that can be expressed using the underlying
transition system components. It is to be noted that the resulting tree contains
only OR and SAND refinements, i.e., no classical AND operator is used. In the worst
case, this may imply that the size of the produced tree is exponentially larger
than if the AND refinement was used.

In all generation approaches described above, attack trees are synthesized for
a given system from its formal model. They thus capture only the attacks that
apply to this specific system. In contrast, in our framework, an attack tree might
be generic, and it is put in context of an, a priori, independent system. Our goal
is to determine which of the attacks covered by the tree are indeed applicable to
the given system, and which of the paths in the system correspond to attacks
in practice, but are not covered by the tree. To the best of our knowledge, the
problem of missing attacks has not yet been formally investigated.

A second novelty of our work is a formalization of weak refinement operators
for attack trees. The weak operators capture the fact that some actions, although
not explicitly present in a tree, might be required so that the path in the system is
indeed an attack. It turns out that a very similar issue has recently been studied
by Mantel and Probst in [17], where the authors introduced the purity property.
This property stipulates whether an attack should perfectly fit a sequence of an
attack tree leaves or whether they can be interleaved with other actions. The core
problem addressed by our weak refinement operators and by the purity property
is the same, but some difference can be observed. Our weak operators are used
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locally at a given node, so it is possible to accept some additional actions at
some but not at all nodes of the tree. In contrast, the purity criterion of [17]
seems to be defined as a property of the attack tree semantics, so the additional
actions are allowed either at all nodes or at none.

3 Background on attack trees

We start with an explanation of what an attack tree is, in Section 3.1, before
introducing the notion of an attack in Section 3.2.

3.1 Attack trees informally

Intuitively speaking, an attack tree is a labeled tree representing how an attacker
can proceed to attack a system. The label of the root node describes the main
goal of the attacker and the remaining nodes refine this goal into subgoals. In
this work, we use classical refinement operators – disjunctive (OR), conjunctive
(AND), and sequential (SAND) – as well as new, weak operators – weak conjunctive
(wAND) and weak sequential (wSAND).

The attack tree leaves represent goals that are precise enough and thus do
not need to be refined any further. The goal of an OR node is achieved if at least
one of the goals of its children is achieved. Achievement of the goal of an AND

node requires to achieve the goals of all of its children. The goal of a SAND node
is achieved if the goals of all of its children are achieved in the specified order. To
achieve the goal of a node refined using wAND (resp. wSAND), the attacker needs to
achieve the goals of all of its children (resp. in the given order) but in addition,
some other actions (not necessarily under the control of the attacker) may also
be necessary before the goal of the node can be fully reached. For instance,
consider that to be able to attack a system, the attacker needs to deactivate
several alarms. In order to do so, he shuts down the power supply, and pursues
his attack. However, after a short period of time, the back-up power supply takes
over and the alarms are back on. The action of putting the electricity back on
is not the attacker’s action, so it will not appear in an attack tree explicitly. To
make modeling of such attack scenarios possible, we use the weak refinement
operators.

Example 1. An example of an attack tree is given in Fig. 1, where we use stan-
dard notation: arcs denote conjunctive nodes, and arrows sequential ones. We
will later use dotted arcs and arrows for weak operators. The main goal of the
attacker is to get a document. To achieve this, the attacker may either corrupt
an employee, or steal the document by himself. To corrupt the employee, the at-
tacker may bribe or blackmail him. Stealing the document requires penetrating
the building and taking the document. To enter the building, the attacker must
unlock the door and then enter undetected. The lock can be opened with a key
that would need to be stolen or it can be forced. The attacker enters undetected
if he manages to deactivate the alarm and pass the door.
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Obtain document

Corrupt employee

Bribe employee Blackmail employee

Steal document

Enter building

Unlock door

Unlock with

stolen key
Force lock

Enter undetected

Deactivate alarm
Pass through

the door

Take document

Fig. 1: An attack tree for obtaining a document.

We now give the definition and formal notation for attack trees. For the rest
of the paper, we fix a set ACT that models all the actions that the attacker can
execute.

Definition 1. An attack tree θ over ACT is either a leaf a ∈ ACT, or a composed
tree OP(θ1, θ2, . . . , θn), where OP ∈ {OR, SAND, AND, wSAND, wAND} and θ1, θ2, . . . , θn
are attack trees over ACT.

To differentiate classical OR, AND, and SAND refinement operators from wAND

and wSAND, we refer to the former ones as strong and to the latter ones as weak.

3.2 Attacks

An attack tree represents a collection of attacks that an attacker can follow to
achieve his goal. In this work we formalize an attack as a sequence of the elements
of ACT sufficient to achieve the goal of the root node of the tree, accordingly to
the refinement operators.

Example 2. For instance, the tree in Fig. 1 models the following set of attacks:

A1 : Bribe employee

A2 : Blackmail employee

A3 : Unlock with stolen key, Deactivate alarm, Pass through the door,

Take document

A4 : Unlock with stolen key, Pass through the door, Deactivate alarm,

Take document

A5 : Force lock, Deactivate alarm, Pass through the door,

Take document

A6 : Force lock, Pass through the door, Deactivate alarm,

Take document
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One can notice that attacks A3 and A4 (similarly A5 and A6) differ only in the
order in which the actions of passing through the door and deactivating the alarm
are executed. This is due to the AND operator refining the Enter undetected

node. However, given a specific building where the document is stored, one of
these attacks might actually be unfeasible. Indeed, some alarms can be deac-
tivated only from outside, whereas others require a person to first enter the
building and then deactivate the alarm within a short, predefined time lapse.
Since attack trees are often created without having full knowledge of the system
they will be applied to, they might represent some sequences of actions that in
reality are not valid attacks. On the contrary, the attack tree modeler who hap-
pens to have a specific type of alarm at his home, e.g., the one to be deactivated
from outside, might be biased during the attack tree creation process and model
Enter undetected with SAND (Deactivate alarm, Pass through the door), in
which case the sequences A4 and A6 will not be considered as possible attacks
in the tree, even if they are feasible in the system.

In order to deal with such discrepancies, it is necessary to put an attack tree
in the context of the analyzed system to define a formal semantics for attack trees
that captures all valid attacks, and only them. We achieve this by an explicit
modeling of the analyzed system, using labeled transition systems.

4 Enhancement of the attack tree model

In Section 4.1, we recall basic knowledge on labeled transition systems and define
operations on paths that we use in Section 4.2 to equip attack trees with formal
semantics relative to the analyzed system.

4.1 System modeling with labeled transition systems

To model real-life systems whose security we want to analyze, we use tran-
sition systems with transitions labeled by the elements of ACT. We use non-
deterministic systems to be able to capture the fact that some actions of the
attacker are guided by the environment or are conditioned on the actions of
other parties. Exploiting non-determinism to reason about an impact of the en-
vironment on an agent behavior is a standard approach in the model checking
community (see for example [5, page 22]).

Definition 2. A finite transition system labeled by ACT is a tuple S def
= (S,→),

where S is the set of states and →⊆ S × ACT× S is the set of transitions.

Note that we write s1
a−→ s2 instead of (s1, a, s2) ∈→ when referring to a tran-

sition between two states s1, s2 ∈ S labeled by a ∈ ACT, and call this transition
an a-transition.

An example of a very simple transition system, modeling how a person can
deactivate two alarms, is given in Fig. 5, in Section 4.2.

Let us now recall the notion of a path in a transition system, that we use in
our framework to formalize attacks.
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Definition 3. A path π in a transition system S is a finite sequence of the

form π = s0a1s1 . . . ansn, where, for all 0 ≤ i < n, we have si
ai+1−−−→ si+1. We

let π.first
def
= s0, π.last

def
= sn, and trace(π)

def
= a1 . . . an ∈ ACT∗.

A path π = s0a1s1 . . . ansn is elementary whenever the states occurring in π
are all distinct, namely, for all i 6= j, we have si 6= sj.

The set of all paths (resp. elementary paths) in S is denoted by Π(S)
(resp. Πelem(S)). Given a set of paths Π ⊆ Π(S), we write Π.first for the
set {π.first | π ∈ Π} and Π.last for the set {π.last | π ∈ Π}.

The size of a path π, written |π|, is equal to its number of transitions, and
π(i) is the i + 1st state of π. We have π(0) = π.first and π(|π|) = π.last. The
subsequence of states in a path π from π(i) to π(j) is denoted by π[i, j]. Such a
subsequence is called a factor of π with anchoring [i, j].

In order to further analyze paths, we now define their concatenation and
parallel composition. Intuitively speaking, the concatenation of two paths π1
and π2 can be done if the last state of π1 is equal to the first state of π2. The
result of the concatenation is then a path π containing the sequence of states
of π1 followed by the sequence of states of π2, without any additional state or
transition, as illustrated in Fig. 2.

a0 a1 a2
π1 s0 s2 s7 s1

a3 a4
π2 s1 s4 s6

a0 a1 a2 a3 a4
�(π1, π2) s0 s2 s7 s1 s4 s6

Fig. 2: Concatenation of paths π1 and π2.

Formally, the path concatenation is defined as follows:

Definition 4. Let π1, π2, . . . , πn ∈ Π(S) be paths in S, such that πi.last =
πi+1.first, for 1 ≤ i < n. The concatenation of π1, π2, . . . , πn, denoted with
�(π1, π2, . . . , πn), is the path π satisfying π[

∑i−1
k=1 |πk|, (

∑i−1
k=1 |πk|) + |πi|] = πi,

for every i ∈ {1, . . . , n}.
By extension, given sets of paths Π1, Π2, . . . ,Πn, we let

�(Π1, Π2, . . . ,Πn)
def
= {�(π1, π2, . . . , πn) | πi ∈ Πi, for 1 ≤ i ≤ n}.

Concatenation on sets of paths will be used to define the semantics of the
SAND operator in attack trees. To formalize the AND operator, we will use the
notion of parallel composition of paths.
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Intuitively speaking, a path π is a parallel composition of paths π1, π2, . . . , πn
if it is possible to obtain π by combining π1, π2, . . . , πn in a way where every
pair of consecutive states (i.e., every transition) in π is covered by one of the πi.
Thus, the very action carried by this transition takes part in at least one of the
paths among π1, π2, . . . , πn. Fig. 3 illustrates the notion of parallel composition
of paths.

a0 a1 a2 a3 a4 a5
π s0 s2 s7 s1 s4 s6 s3

a0
π1 s0 s2

a1 a2 a3
π3 s2 s7 s1 s4

a3 a4 a5
π2 s1 s4 s6 s3

Fig. 3: Path π is a parallel composition of paths π1, π2, and π3.

Fig. 4 shows an example of a path π that is not a parallel composition of π1,
π2, π3, because the transition s2

a1−→ s7 in π is not covered by any of the πi’s.

a0 a1 a2 a3 a4 a5
π s0 s2 s7 s1 s4 s6 s3

a0
π1 s0 s2

a2 a3
π3 s7 s1 s4

a3 a4 a5
π2 s1 s4 s6 s3

Fig. 4: Path π is not a parallel composition of π1, π2, π3.

In Example 3 of Section 4.2, we expose the reasons for introducing such a
parallel composition of paths, whose formal definition is as follows.

Definition 5. A path π is a parallel composition of paths π1, π2, . . . , πn, denoted
by π ∈ !(π1, π2, . . . , πn), whenever the following conditions are satisfied:

– for every i ∈ {1, . . . , n}, the path πi is a factor of π at some anchoring [ki, li],
– for every j ∈ {0, . . . , |π|−1}, the inclusion [j, j+ 1] ⊆ [ki, li] holds, for some
i ∈ {1, . . . , n}.
By extension, given sets of paths Π1, Π2, . . . ,Πn, we let

!(Π1, Π2, . . . ,Πn)
def
= {!(π1, π2, . . . , πn) | πi ∈ Πi, for 1 ≤ i ≤ n}.
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It is important to notice that our parallel composition of paths is orthogo-
nal to the notion of parallel composition of labeled transition systems: parallel
composition of paths defined in Definition 5 captures the concomitance of goal
achievements along a fixed execution (path) of the transition system, while the
parallel composition of transition systems reflects the concomitance of execu-
tions.

Finally, to formalize the weak refinement operators, we relax the parallel
composition to its weak form, called weak parallel composition. In this case, the
paths to be composed do not need to overlap at all.

Definition 6. Path π is a weak parallel composition of paths π1, π2, . . . , πn,
denoted by π ∈ 9(π1, π2, . . . , πn), whenever the following holds:

– for every i ∈ {1, . . . , n}, the path πi is a factor of π at some anchoring [ki, li],
– π[0, |πi|] = πi, for some i ∈ {1, . . . , n},
– π[|π| − |πj |, |π|] = πj, for some j ∈ {1, . . . , n}.

By extension, given sets of paths Π1, Π2, . . . ,Πn, we let

9(Π1, Π2, . . . ,Πn)
def
= {9(π1, π2, . . . , πn) | πi ∈ Πi, for 1 ≤ i ≤ n}.

Note that in Fig. 4, while π is not a parallel composition of paths π1, π2, π3,
it is a weak parallel composition, i.e., π ∈ 9(π1, π2, π3).

In the next section, we use the operations on sets of paths defined here to
construct the semantics of an attack tree in the presence of a system.

4.2 Attack tree semantics in the presence of a system model

Let S be a transition system labeled by ACT, and let θ be an attack tree over
ACT. Our objective is to define the semantics of θ in terms of sequences of actions
from S, that satisfy the root goal of θ. Each node will thus be interpreted as a
set of paths in S, that is constructed as follows.

A leaf node labeled with a ∈ ACT is simply interpreted with paths of length
one, corresponding to a-transitions in S. The interpretation of an OR node is
the union of the sets of paths corresponding to its children. Indeed, any path
satisfying the goal of a child of an OR node also satisfies the goal of the OR node
itself.

To achieve the goal of a SAND node, the attacker needs to achieve the goals
of all of its children in the given order. Thus, to provide the interpretation of
a SAND node, we concatenate the sets of paths corresponding to its children, as
defined in Definition 4. Similarly, to achieve the goal of a wSAND node, the goals
of all of its children need to be achieved in the given order, but arbitrary other
actions can occur between each subgoal realization. This permits to capture the
interleaving of this sequential goal with other parts of the attack, as well as
adequately model cases where some system reaction or behavior is needed to
continue the attack (recall the example of the back-up power supply, discussed
in Section 3.1). Formally, we thus interpret a wSAND node using concatenation of
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sets of paths satisfying the node’s children interleaved with any path possible in
the system.

Finally, AND and wAND require that the goals of all of their child nodes are
achieved, but do not impose any order on this achievement. In the case of the
strong operator AND, the actions of each subgoal must be seen contiguously,
whereas for the weak operator wAND these subgoals can be arbitrarily interleaved
with other actions. To capture this behavior, parallel (Definition 5) and weak
parallel composition (Definition 6) of the sets of paths are used to provide the
interpretation for the two types of conjunctively refined nodes.

Overall weak versions of the operators are more lenient than their strong
counterparts. They introduce a weaker notion of precedence that fits the use of
underspecified attack trees (some actions of the system are not precisely mod-
eled), and more generally the fact that the immediate “Next” constraint of the
strong operators is difficult to enforce in the context of a concurrent system.
These weak operators let us express “stutter invariant” behavior with attack
trees. In practice, for concurrent systems, stutter invariant property specification
is often more relevant than using the full temporal logic with neXt. Definition 7
summarizes the above discussion.

Definition 7. Given a transition system S, the path semantics of an attack tree
θ is the set of paths JθKS ⊆ Π(S), defined by induction as follows:

– JaKS = {s1as2 ∈ Π(S) | s1, s2 ∈ S},
– JOR(θ1, θ2, . . . , θn)KS = ∪(Jθ1KS , Jθ2KS , . . . , JθnKS),
– JSAND(θ1, θ2, . . . , θn)KS = �(Jθ1KS , Jθ2KS , . . . , JθnKS),
– JAND(θ1, θ2, . . . , θn)KS = !(Jθ1KS , Jθ2KS , . . . , JθnKS),
– JwSAND(θ1, θ2, . . . , θn)KS = �(Jθ1KS , Π(S), Jθ2KS , Π(S), . . . ,Π(S), JθnKS),
– JwAND(θ1, θ2, . . . , θn)KS = 9(Jθ1KS , Jθ2KS , . . . , JθnKS).

The example below illustrates the use of parallel composition of paths to
interpret an AND node.

Example 3. Suppose that an attacker needs to deactivate two alarms. To do
so, he can either disable Alarm 1 and Alarm 2 in any order, or simply shut
down the power supply, which automatically deactivates both alarms. The tran-
sition system modeling these possibilities is given in Fig. 5. Suppose that the

s0

s1

s2

s3

Disable alarm 1 Disable alarm 2

Shut down power
Disable alarm 2 Disable alarm 1

Fig. 5: Simple transition system.

attacker’s behavior is modeled with the attack tree from Fig. 6. The path se-
mantics of this tree is composed of paths s0s1s2, s0s3s2, and s0s2 (we omit the



12 F. Wacheux et al.

actions for readability). The last path is interesting. Indeed, s0s2 belongs to both
JDeactivate Alarm 1KS and JDeactivate Alarm 2KS . It is also a valid path in
the parallel composition !(JDeactivate Alarm 1KS , JDeactivate Alarm 2KS),
because it satisfies both subgoals at the same time. This example shows that, in
the parallel composition of paths, and thus in the semantics of AND nodes, any
overlap between the paths interpreting their child nodes is allowed, as already
illustrated in Fig. 3.

Deactivate both

Deactivate Alarm 1

Disable alarm 1 Shut down power

Deactivate Alarm 2

Disable alarm 2 Shut down power

Fig. 6: Example with overlap on AND node.

Notice that the framework developed in this work allows for repetitions of an
action in the tree, as it is the case of Shut down power in Example 3. The presence
of such repeated actions may, for instance, result from the use of attack tree
libraries. For some scenarios, having an action several times in a tree might be
necessary. Recall the power example discussed in Section 3.1, where the back-up
power supply is activated short after the main electricity source is switched off.
Depending on how quickly the attacker performs his attack, the Shut down power
action from the tree in Fig. 6 will need to be done either one or two times. To
cover both cases, the action is repeated in the tree, and our formalism is flexible
enough to interpret such repeated nodes as the same or separated instances of
the action.

4.3 System-based approach to classical view on attack trees

To finish this section, we relate the system-based view on attack trees with
classical approaches where the system is not considered. Indeed, most of existing

s

12
3

4
5

6 7
8

9

Fig. 7: System U{1,...,9}.

semantics for attack trees do not take the analyzed
system into account. We would like to point out that
our system-based framework can simulate such ap-
proaches by considering the universal transition sys-
tem over ACT, written UACT, allowing to execute any
possible sequence of actions over ACT. The universal
transition system is composed of a single state and a
looping transition for each action in ACT, hence it looks
like a flower. An example of UACT over ACT = {1, . . . , 9}
is given in Fig. 7.
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To define the semantics of attack trees that is independent of the system, we
introduce trace language of an attack tree θ over ACT, denoted by L(θ) ⊆ ACT∗,
and defined as:

L(θ)
def
= {trace(ρ) | ρ ∈ JθKUACT}.

The following result makes a link between the trace language of an attack tree
and its path semantics.

Proposition 1. Given a transition system S and a path π ∈ Π(S), we have
that π ∈ JθKS if, and only if, trace(π) ∈ L(θ).

Proof. By definition of L(θ), we have to show that π ∈ JθKS if, and only if, there
exists ρ ∈ JθKUACT with trace(π) = trace(ρ). The candidate for ρ is the path like
π but where each state is replaced by the unique state of UACT; note that ρ is
indeed a path of UACT and that by construction trace(π) = trace(ρ). It is routine
to verify by induction over θ that this candidate is adequate. ut

The following example emphasizes the role played by the system in the path
semantics.

Example 4. Take the tree θ = SAND(AND(a, b), AND(c, d)). It is easy to see that
L(θ) = {abcd, abdc, bacd, badc}. However, when interpreting the tree w.r.t. a
system, using the semantics from Definition 7, not all sequences of actions will
necessarily be feasible.

– If we consider the universal system UACT, then the path semantics will contain
the four attacks.

– For the system S1 in Fig. 8a, the path semantics of the tree only contains
attacks abcd and bacd.

– Finally, for the system S2 in Fig. 8b, the path semantics contains attacks
abcd, abdc, and bacd.

s0

s1

s2

s3

s5

s4

s6

s7

a

a

b

e

b

a

c

d

(a) System S1

s0

s1

s2

s3

s5

s4

s6

s7

s8

s9

b

a

b

d

b

a

a

d

c

c

c

d

(b) System S2

Fig. 8: Different systems induce different path semantics.

Example 4 illustrates that the same attack tree does not have to have the
same meaning depending on the underlying system. The path semantics allows
the experts to resort to some libraries of already designed trees without the
inconvenience of checking what is indeed achievable or not in the system they
have in mind. A practical example of such reusable attack tree libraries can be
found in Chapter 4 of [19].
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5 Missing attacks

In this section, we exploit the path semantics to compare the tree with what the
attacker can achieve in the system. In Section 5.1, we formally define missing
attacks, and in Sections 5.2 to 5.4 we address the decision problem MAE for
the existence of missing attacks together with the related trace membership
decision problem TATM, and provide complexity bounds for these problems.
Finally, Section 5.5 describes a prototype implementation that we developed to
automate the solving of the TATM problem.

5.1 The definition of missing attacks

We now explain how we can warn the security experts about possibly missing
attacks in an attack tree. We start by an illustrating example. Consider the tree
θ from Example 4 and let us look again at system S2 in Fig. 8b. What can we say
about the sequence of actions bdac? According to system S2, this sequence starts
and ends in the same states as actual attacks. Thus, the four paths between s0
and s9 are somehow equivalent in the system, but one of them is not in the
semantics of attack tree θ. It could be interesting for the expert to get a warning
about such paths that are equivalent to attacks in the system, but that he did
not include in the tree. This is what we call completeness analysis.

Note that we are not claiming that any such path in the system must be
considered as an attack, that is up to the experts to decide. However, we believe
that analyzing the completeness of the attack tree and giving warnings to security
experts about these paths can prevent some human-related errors, which can be
troublesome if not tackled.

To formally define the notion of missing attack, we first introduce the closure
of a set of paths that encompasses extra paths having the same extremities as
the paths in the set.

Definition 8. Given a system S, the closure of a set of paths Π ∈ Π(S) is

cl(Π)
def
= {π ∈ Πelem(S) | π.first ∈ Π.first and π.last ∈ Π.last}.

It is clear that any elementary path in Π is also in cl(Π). However, the
reciprocal may not hold in general and this is how we capture missing attacks.

Definition 9. A path π is a missing attack if it belongs to ∆Sθ
def
= cl(JθKS)\JθKS .

To make it simple, a missing attack in θ is a path in S that imitates attacks
in JθKS (starts and ends in states of existing attacks) but is not in JθKS itself. It
is important to notice that missing attacks are restricted to elementary paths.
This is a robust choice: indeed, if we allowed non-elementary paths, we would
basically take an inventory of existing attacks extended with extra uninteresting
cycles, irrelevant from the point of view of a rational attacker for adding useless
sequences of actions.
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Example 5. We illustrate the notion of missing attacks on the transition sys-
tem from Fig. 5. Suppose that the tree designer is not interested in Alarm
2. We consider the leaf attack tree Disable alarm 1. We omit the actions for
readability, and we have: JDisable alarm 1KS = {s0 −→ s1, s3 −→ s2}, and
cl(JDisable alarm 1KS) = {s0 −→ s1, s3 −→ s2, s0 −→ s1 −→ s2, s0 −→ s3 −→
s2, s0 −→ s2}, so that ∆Sθ = {s0 −→ s1 −→ s2, s0 −→ s3 −→ s2, s0 −→ s2} 6= ∅.
In particular, the missing attack s0 −→ s2 might be problematic if the expert
protects the system against the action Disable alarm 1 only, because there will
still be a possibility for the attacker to counter the alarm by shutting down the
power supply.

To allow for reasoning about missing attacks, we introduce and investigate
the Missing Attack Existence decision problem.

5.2 The Missing Attack Existence problem

Since in risk analysis missing attacks can have severe consequences, we address
the natural question of the existence of missing attacks, captured by the following
decision problem.

Definition 10 (Missing attack existence problem (MAE)).

– Input: an attack tree θ and a system S.
– Output: ∆Sθ 6= ∅?

Otherwise said, can we find three paths π, π1, π2 that satisfy the following
constraints: π.first = π1.first, π.last = π2.last, π /∈ JθKS , π1 ∈ JθKS , and
π2 ∈ JθKS?

It is very tempting to design a non-deterministic algorithm that can select
three paths and then checks these five constraints above. However, due to poten-
tial weak operators wSAND and wAND, it seems difficult to bound the size of these
paths. While the size of π can be bounded by the size of the system, as missing
attacks are elementary paths, it is unclear how to bound the size of paths π1
and π2. Discarding weak operators gives a natural bound which is the number
of leaves of θ, thus polynomial in the size of the input.

Now, once these three paths are guessed, the non-deterministic algorithm
verifies the five constraints. The first two can be verified in O(1), while the last
three reduce to answering the Trace Attack Tree Membership problem (TATM)
formalized in the following definition.

Definition 11 (Trace Attack Tree Membership problem (TATM)).

– Input: an attack tree θ (over ACT) and a trace t ∈ ACT∗

– Output: t ∈ L(θ)?

Proposition 2. TATM is NP-complete.
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Based on Proposition 2 (a corollary of Propositions 3 and 5 fully proven
in the next Sections 5.3 and 5.4 respectively), we design the non-deterministic
Algorithm 1 that makes three independent calls to NP oracles.

Input: An attack tree θ, a system S.
Output: ACCEPT if ∆Sθ 6= ∅.
CHOOSE elementary path π ∈ Π(S), and π1, π2 ∈ Π(S) of length at
most |θ|;

if π.first 6= π1.first or π.last 6= π2.last then
REJECT

end
else

if the NP oracle for the question “trace(π) ∈ L(θ)” answers “Yes”
then

REJECT
end
else

if the NP oracle for the question “trace(π1) ∈ L(θ)” answers
“No” then

REJECT
end
else

if the NP oracle for the question “trace(π2) ∈ L(θ)” answers
“No” then

REJECT
end
else

ACCEPT
end

end

end

end

Algorithm 1: MissingAttack(θ,S).

Correctness of Algorithm 1, i.e., the fact that it can return ACCEPT if,
and only if, ∆Sθ 6= ∅, is easy to establish. Indeed, assume Algorithm 1 can return

ACCEPT. Then, by Proposition 1, there is a way to choose π /∈ JθKS , π1 ∈ JθKS
and π2 ∈ JθKS , such that π.first = π1.first and π.last = π2.last. This shows
that π is a missing attack, so that ∆Sθ 6= ∅. Reciprocally, if ∆Sθ 6= ∅, pick a missing

attack π ∈ ∆Sθ . By definition, π /∈ JθKS and there must exist π1, π2 ∈ JθKS with
π.first = π1.first and π.last = π2.last, so Algorithm 1 can return ACCEPT
by non-deterministically choosing these three paths, which concludes.

Corollary 1. The problem MAE restricted to attack trees with operators ranging
over {OR, SAND, AND} is in ΣP

2 of the polynomial hierarchy.
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We recall that ΣP
2 is the class of problems that can be solved by a non-

deterministic polynomial-time algorithm with queries to NP oracles [24].
We are able to establish that MAE is not easy4 by showing its co-NP-

hardness.

Theorem 1. The problem MAE is co-NP-hard, even if we restrict to trees with
operators ranging over {OR, SAND, AND} only.

Proof. We describe a reduction from TATM to MAE such that an instance of
TATM is negative if, and only if, its reduction is a positive instance of MAE.
Since Proposition 3 entails the NP-hardness of TATM, we easily conclude.

Let θ (over ACT) and t = a1a2 . . . an ∈ ACT∗ be an instance of TATM. Pick a

fresh action symbol # /∈ ACT. We define the attack tree θ′
def
= OR(θ,#) and the

transition system S with n+ 1 states s0, s1, . . . sn with only two paths: the path

πt
def
= s0

a1−→ s1
a2−→ . . .

an−−→ sn and the path s0
#−→ sn. It is easy to prove that

πt ∈ ∆Sθ′ if, and only if, t /∈ L(θ), which concludes. ut

We do not know if MAE is ΣP
2 -hard, we unsuccessfully attempted to reduce

the typical ΣP
2 -complete problem QBF2 that asks if a quantified Boolean for-

mula of the form ∃x1 . . . ∃xn∀y1 . . . ∀ymϕ, where ϕ is a formula over variables
x1, . . . , ym, evaluates to true.

We now come back to proving Proposition 2 regarding the NP-completeness
of TATM, and show it in the two next sections.

5.3 The NP-hardness of TATM

This section is dedicated to show that the TATM problem is NP-hard.

Proposition 3. TATM is NP-hard, even if we discard weak operators wSAND

and wAND.

We consider the decision problem of Packed Interval Covering (PIC), which
is NP-complete according to [22].

Let N be an integer. The PIC problem consists in deciding whether we
can cover (in the classical sense) interval [1, N ] by selecting exactly one subin-
terval per pack of subintervals given as input. For instance, if the packs are
P1 = {[1, 6], [5, 9]}, P2 = {[1, 3], [4, 6], [7, 7]}, P3 = {[4, 4]}, we can cover [1, 9] by
selecting [5, 9], [1, 3] and [4, 4], as illustrated in Fig. 9.

4 This holds under the assumption that P 6= NP.
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pack No 1

pack No 2

pack No 3

1 2 3 4 5 6 7 8 9

Fig. 9: An instance of the PIC problem.

Formally, we state the following definition.

Definition 12 (Packed Interval Covering (PIC) problem).

– Input: an integer N > 0 and a family of finite sets P1, . . . , PM ( packs) of
subintervals of [1, N ].

– Output: are there subintervals I1 ∈ P1, . . . , IM ∈ PM , such that
⋃M
k=1 Ik =

[1, N ]?

Proposition 4. PIC is NP-complete.

Arguing that PIC belongs to NP is easy. The certificate is simply a list of M
sub-intervals of [1, N ] (given by their bounds), thus it is polynomial in the size
of the packs input. It remains to verify for i ∈ {1, . . . ,M} that interval of rank
i belongs to pack Pi, and that the union of the chosen intervals covers [1, N ],
which can all be performed in polynomial time. Regarding the NP-hardness of
PIC, there is a polynomial reduction from the NP-complete problem (3, B2)-SAT
[6], which is the restriction of 3-SAT where each variable has exactly two positive
occurrences and two negative occurrences. The full proof of this reduction can
be found in [22].

Back to the proof of Proposition 3, we exhibit a polynomial reduction of PIC
into TATM, so TATM is NP-hard. This reduction relies on a transformation that,
given an instance I of PIC, returns an instance I ′ of TATM, of size polynomial
in the size of I, and such that I is a positive instance of PIC iff I ′ is a positive
instance of TATM.

Instead of providing the full proof, we illustrate the idea on the example of
the 3 packs P1 = {[1, 6], [5, 9]}, P2 = {[1, 3], [4, 6], [7, 7]}, P3 = {[4, 4]} to cover
the whole interval [1, 9]. Its corresponding instance of TATM is composed of the
attack tree θ0, depicted in Fig. 10 (we allow unary OR and SAND operators, as for
nodes labeled P3 and [4, 4] on the right-hand side of the tree, for instance), and
the trace t0 = 123456789.

Recall that this pack instance has solution [5, 9], [1, 3], [4, 4].
Consider the universal transition system U{1,...,9}, and the unique path π0

whose trace is t0, namely the path s
1−→ s

2−→ s . . .
9−→ s.
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AND

P1

[1, 6]

1 2 3 4 5 6

[5, 9]

5 6 7 8 9

P2

[1, 3]

1 2 3

[4, 6]

4 5 6

[7, 7]

7

P3

[4, 4]

4

Fig. 10: The tree θ0.

According to the path semantics,

– π0 is a parallel composition of paths π1 = s
5−→ s

6−→ s
7−→ s

8−→ s
9−→ s,

π2 = s
1−→ s

2−→ s
3−→ s, and π3 = s

4−→ s, and
– π1 (resp. π2, π3) belong to the path semantics of the left (resp. middle, right)

subtree of the root node of θ0.

As a consequence, t0 ∈ L(θ0).
Notice that the proposed reduction yields attack trees that do not use weak

operators, so that the NP-hardness of TATM holds even if we discard the use of
weak opertors in the input tree of the problem.

In order to achieve the proof of Proposition 2, namely to show that TATM is
in NP, we have designed a non-deterministic polynomial-time algorithm that is
explained in the next section.

5.4 The NP-membership of TATM

Proposition 5. TATM is in NP.

The proof of Proposition 5 is a direct consequence of the non-deterministic
algorithm Algorithm 2 that reads the input trace while marking the nodes of the
tree that have been “satisfied” by the prefix trace read so far. Algorithm 2 relies
on the subroutine Algorithm 3, with initial call check(θ, t, ∅, startNodes(θ), ∅).

Input: An attack tree θ (over ACT) and a non-empty trace t ∈ ACT∗

Output: ACCEPT if t ∈ L(θ), REJECT otherwise.
check(θ, t, ∅, startNodes(θ), ∅)

Algorithm 2: checkMembership(θ, t).

Before explaining the subroutine check(θ, t, Must, May, Marked) (Algorithm 3),
let us first fix the notation used.

We use Nodes(θ) to denote the set of nodes of the tree θ, and we write root(θ)
for its root, and Leaves(θ) for its leaf node set. For a node γ ∈ Nodes(θ), we use
self-explanatory notation: children(γ), parent(γ), and ancestors(γ) (including
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γ itself). We also consider sib(γ) that denote the siblings of γ (excluding γ it-
self) and rsib(γ) that refers to the right sibling of γ (if any). For γ ∈ Leaves(θ),
we write actionAt(γ) for the action that labels this node. Also, we may lift
relevant notions to a set of nodes Γ , such as actionAt(Γ ), ancestors(Γ ). We
let descendentleaves(γ) denote the set of leaf nodes of the subtree at node
γ, and startNodes(θ) be the subset of nodes of θ whose labels are actions
that the attacks may start with. For example, regarding the attack tree of
Fig. 1, the set startNodes(θ) is composed of the leaf nodes that carry label
either Bribe employee, or Blackmail employee, or Unlock with stolen key, or
Force lock.

More formally, startNodes(θ) is defined by induction over θ and can be easily
computed by a terminal recursive algorithm in linear time: startNodes(a) = {a};
for every OP ∈ {OR, AND, wAND}, startNodes(OP(θ1, . . . , θn)) =

⋃
(startNodes(θi);

for every OP ∈ {SAND, wSAND}, startNodes(OP(θ1, . . . , θn)) = startNodes(θ1).

Input: A root node θ, a trace t, a set of nodes Must ⊆ Nodes(θ), a set of leaves
May ⊆ Leaves(θ), a set of nodes Marked ⊆ Nodes(θ)

Output: ACCEPT if t ∈ L(θ), REJECT otherwise
if root(θ) ∈ Marked and t = ε then

ACCEPT
end
else

if May = ∅ or t = ε then
REJECT

end
else

CHOOSE ∅ ( Γ ⊆ May ;
if actionAt(Γ ) * {t(1), ?} then

REJECT
end
else

if Must * ancestors(Γ ) then
REJECT

end
else

Must← ∅; May← May \ Γ ; Marked← Marked ∪ Γ ;
forall γ ∈ Γ with actionAt(γ) 6= ? do

propagate(θ, γ, Must, May, Marked)
end

end

return check(θ, t≥1, Must, May, Marked)
end

end

end

Algorithm 3: check(θ, t, Must, May, Marked).
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We now explain Algorithm 3 that takes the following inputs:

– an attack tree θ (over ACT), according to Definition 1,

– a trace t ∈ ACT∗,

– a set of nodes Must that has to “progress” at next step, initialized to ∅ for
the first call,

– a set of leaves May that may progress at next step, initialized as startNodes(θ),

– a set of nodes Marked that have already been “consumed” while reading
trace t, initialized to ∅ for the first call.

The principle of Algorithm 3 is as follows:

1. Choose a set of leaves Γ inside May that contains Must, and the label of the
chosen leaves matches the first action of the trace t.

2. Put those leaves γ in Marked.

3. Update Must, May and Marked accordingly by calling
propagate(θ, γ, Must, May, Marked) (Algorithm 4), for each γ in Γ .

4. Goto 1 with the updated sets Must, May, and Marked and the next action of
the trace.

The call to propagate(θ, γ, Must, May, Marked) allows us to update the sets
May, Must and Marked, with the consequences of marking the chosen leaves. We
set internal nodes as marked according to the path semantics: when a child of
an OR node is marked so is this node, and when all the children of either of
SAND, wSAND, AND, or a wAND node are marked, so is this node. Also, we put a
leaf in May when it gets enabled: namely, when the first child of a wSAND or SAND
node is marked, its right sibling (if any) gets enabled. Finally, we add nodes to
Must when they are expected to progress at the next step: for SAND nodes once
a child is marked, the next child has to progress in the next step, and for an
AND node one of its non-marked children has to progress in the next step. The
propagation of all these constraints is recursive: at each newly marked node,
propagate is called again on this node.

The tricky part in this algorithm is due to weak operators: we have to take
into account that some actions in t may not be due to any leaf of the tree. This
is done by dynamically adding and removing artificial leaves to wSAND and wAND

nodes, with special label ?, so that these new leaves can be chosen to validate
the Must requirements. These added leaves somehow correspond to an ”ignore”
instruction while reading the trace: if there are some weak operators in the tree
and we encounter an action in t that is not a leaf of θ, the algorithm can simply
choose to ignore it and keep on with the next action of t, while validating the
Must requirement on the parent node.

Finally, trace t is in θ if we manage to read the whole trace, and if the root
of the tree is marked in the end. Otherwise, the trace is rejected.
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Input: A root node θ, Must ⊆ Nodes(θ), May ⊆ Leaves(θ), Marked ⊆ Nodes(θ),
and node γ newly added to Marked

Output: Update of Must, May, and Marked

if γ 6= root(θ) then
µ← parent(γ);
switch µ.OP do

case OR do
May← May \ descendentleaves(µ); propagate(θ, Must, May, Marked, µ)

end
case SAND do

if rsib(γ) exists then
γ′ ← rsib(γ); Must← Must ∪ {γ′}; May← May ∪ startNodes(γ′)

end
else

propagate(θ, Must, May, Marked, µ)
end

end
case AND do

if sib(γ) ⊆ Marked then
propagate(θ, Must, May, Marked, µ)

end
else

Must← Must ∪ {µ}
end

end
case wSAND do

if rsib(γ) exists then
µ← µ.addchildwithlabel(?);
May← May ∪ {µ}; May← May ∪ {startNodes(rsib(γ))}

end
else

forall γ′ ∈ children(µ) with actionAt(γ′) = ? do
May← May \ {γ′}; µ.removechild(γ′)

end
Marked← Marked ∪ {µ}; propagate(θ, Must, May, Marked, µ)

end
case wAND do

if sib(γ) ⊆ Marked then
forall γ′ ∈ children(µ) with actionAt(γ′) = ? do

May← May \ {γ′}; µ.removechild(γ′)
end
Marked← Marked ∪ {µ}; propagate(θ, Must, May, Marked, µ)

end
else

µ← µ.addchildwithlabel(?); May← May ∪ {µ}
end

end

end

end

end

Algorithm 4: propagate(θ, Must, May, Marked, γ).



Attack trees: a notion of missing attacks 23

5.5 Implementation

To support our approach, we have implemented a proof of concept implemen-
tation to solve the TATM problem. The tool is available online as an open
source prototype, at https://github.com/yanntm/Abat. The implementation
includes a small Xtext based editor that allows to specify an attack tree and a
set of traces. The tool then checks the membership of each trace in the language
of the specified tree, as visualized in Fig. 11.

Fig. 11: Interface of the tool https://github.com/yanntm/Abat.

Below, we illustrate how our implementation works on an example. We spec-
ify the tree obtained from the reduction of the PIC instance considered on page 19
as follows:

tree = AND (
OR ( SAND ("a1","a2","a3","a4","a5","a6") , SAND("a5","a6","a7","a8","a9")),
OR ( SAND ("a1","a2","a3") , SAND("a4","a5","a6"), "a7" ),
"a4"
);

Then, we give the following traces:

trace interval_1_1 = "a1";
trace interval_1_2 = "a1","a2";
trace interval_1_3 = "a1","a2","a3";

https://github.com/yanntm/Abat
https://github.com/yanntm/Abat
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trace interval_1_4 = "a1","a2","a3","a4";
trace interval_1_5 = "a1","a2","a3","a4","a5";
trace interval_1_6 = "a1","a2","a3","a4","a5","a6";
trace interval_1_7 = "a1","a2","a3","a4","a5","a6","a7";
trace interval_1_8 = "a1","a2","a3","a4","a5","a6","a7","a8";
trace interval_1_9 = "a1","a2","a3","a4","a5","a6","a7","a8","a9";
trace interval_1_10 = "a1","a2","a3","a4","a5","a6","a7","a8","a9","a10";

and the tool answers:

Trace "interval_1_1" rejected
Trace "interval_1_2" rejected
Trace "interval_1_3" rejected
Trace "interval_1_4" rejected
Trace "interval_1_5" rejected
Trace "interval_1_6" accepted
Trace "interval_1_7" accepted
Trace "interval_1_8" rejected
Trace "interval_1_9" accepted
Trace "interval_1_10" rejected

The current version of our implementation supports only trees without weak
operators, but we will soon be able to consider arbitrary trees by extending the
backtracking approach to the whole Algorithm 3.

6 Conclusion and future work

We have proposed a framework where attack trees are interpreted according to a
model of the system, thus yielding their path semantics, but mostly displaying a
natural notion of missing attacks. We then have considered the decision problem
of the existence of a missing attack (MAE), which is highly pertinent for attack
tree designers.

It should be noticed that our notion of missing attack relies on the model of
the system and not on the system itself, just as the model checking principle in
system verification makes the model design an upstream issue.

We insist on the robustness of the proposed approach for our models of
systems: those are transition systems that allow for non-deterministic behavior.
This way, the attacker executing an action may not control its effects, which
captures the idea that the attacker interacts with some environment (seen as
an abstract opponent that solves the non-determinism – a very standard way
of modeling in formal methods). The attacks are thus sequences of actions that
the attacker can entirely perform, if the environment does not prevent him from
doing so.

Also, regarding our formal setting, we have equipped attack trees not only
with standard operators, but also with weak variants of those, allowing more
flexibility in the specification and getting much closer to our intuition when
reading informal trees developed in practice.

From our path semantics, and by considering the universal system where
any sequence of actions can be executed, we have also defined a trace semantics
for attack trees, thus offering an interpretation of attack trees on their own,
and exhibiting a formal notion to investigate the missing attack problem MAE.
In particular, we studied the trace attack tree membership problem TATM and
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showed it is NP-complete. Noticeably, the NP-hardness proof for TATM, even for
trees with no weak operators, resorts to a newly defined combinatorial problem
PIC that, although very natural, has never been considered in the literature.

Next, relying on an NP oracle that answers TATM, we could design non-
deterministic polynomial-time algorithm to solve MAE when weak operators are
discarded. The algorithm guesses three paths and makes three independent calls
to this oracle for each path, which shows its membership in the complexity class
ΣP

2 of the polynomial hierarchy [24] (containing the classes NP and co-NP).

On our way to develop tools for attack tree users, we have implemented
the NP oracles: on the basis of the non-deterministic algorithms described in
Section 5, we have coded their deterministic version as a backtracking algorithm.
The tool is freely available and open source. It is for now mostly dedicated
to educational purposes for better understanding the chosen semantics of the
operators.

There are several directions to pursue this work. First, complexity bounds
need to be made tighter. While we know that MAE is in ΣP

2 and that it is as hard
as any co-NP problem, we still need to fill this gap. Next, we should address
the complexity of (full5) MAE, which requires to provide a bound on the three
paths guessed by Algorithm 1 in the general case, rather than for trees with no
weak operators.

Obviously the aforementioned missing complexity results would shed light
on the difficulty of synthesizing missing attacks, or provide hints for subclasses
of instances where the MAE problem might become simpler.

Moreover, it could be interesting to investigate cases where the problem
TATM is easier. For example, when the tree does not contain any weak op-
erators and actions appear at most once in the tree, the complexity of TATM
becomes linear since there is only one way of interpreting an action in the tree.

Finally, we wish to study variants of the path/trace semantics of attack
trees for weak operators. After all, weak operators offer a way to abstract from
intermediate sequences of actions. These actions are neglected by the designer
for some reason that need to be better understood. We may refine the current
semantics by considering that these actions should be other than those occurring
in the tree. The definition of the path semantics can be adapted accordingly, and
does not change our current results, while giving a hope to obtain complexity
upper bounds for MAE with arbitrary trees.
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