The Attacker Does not Always Hold the Initiative:

Attack Trees with External Refinement

GraMSec 2018, The Fifth International Workshop on Graphical Models for Security

Ross Horne¹, Sjouke Mauw² and Alwen Tiu³

- School of Computer Science and Engineering, Nanyang Technological University, Singapore
 Security and Trust of Software Systems, University of Luxembourg, Luxembourg
- 3. Research School of Computer Science, Australian National University, Canberra, Australia

8 July 2018

Background: Causal Attack Trees

Three types of refinement:

- Node with undirected arc represents conjunctive refinement.
- Node with no arc represents disjunctive refinement.
- Node with directed arc represents sequential refinement.

Attack Trees Evolve as Domain Knowledge is Specialised

In this specialised tree, "steal backup" can only be performed after breaking into the system.

Criterion for Specialisation of Attack Trees

Criterion:

A **specialisation** between attack tree is **sound** with respect to an **attribute domain** whenever:

valuations are **correlated**, for any assignment of values to basic actions.

Notes:

- "specialisation" and "correlation" have many interpretations.
- more general than equality.

Example: Minimum Attack Time Attribute Domain

Basic minimum attack times:

How do we know: first ≤ second for all assignments?

Automating Specialisation

- Even for small examples, time consuming and error-prone to judge specialisations.
- Unclear what "specialisation" means.
- Better to have tool to check automatically to assist with attack tree manipulation.

Solution: define a sound **semantics** with a **decidable** specialisation relation.

Example Verified using the Calculus of Structures

The first tree specialises (implies) the second.


```
Proof:
                                                                                                       axiom
                                                                                                        tidy
                                                                                                                                                                                             interaction
            ((\overline{bribe} \parallel bribe) \otimes ((\overline{breakin} \parallel breakin); (\overline{install} \parallel install))) & ((\overline{breakin} \parallel breakin); ((\overline{steal} \parallel steal) \otimes (\overline{install} \parallel install)))
                                                                                                                                                                                             switch
             ((bribe || bribe)⊗((breakin || breakin); (install || install))) & ((breakin || breakin); ((steal ⊗ instali) || steal || install))
                                                                                                                                                                                            sequence
             (Dribe || bribe) ⊗ ((Dreakin ; Install) || (breakin ; install))) & ((Dreakin ; (steal ⊗ Install)) || steal || (breakin ; install))
                                                                                                                                                                                            switch
             (\overline{(bribe \otimes (\overline{breakin}; \overline{install}))} \parallel bribe \parallel (breakin; install)) \& (\overline{(\overline{breakin}; \overline{(steal \otimes \overline{install})})} \parallel steal \parallel (breakin; install))
                                                                                                                                                                                                         choice
((bribe ⊗ (breakin ; install)) || (bribe ⊕ steal) || (breakin ; install)) & ((breakin ; (steal ⊗ install)) || (bribe ⊕ steal) || (breakin ; install))
                                                                                                                                                                                                          external
                            ((\overline{bribe} \otimes (\overline{breakin}; \overline{install})) \& (\overline{breakin}; (\overline{steal} \otimes \overline{install}))) \parallel (bribe \oplus steal) \parallel (breakin; install)
                                                                                                                                                                            definition
                            (bribe || (breakin ; install)) ⊕ (breakin ; (steal || install)) → (bribe ⊕ steal) || (breakin ; install)
```

Breaking Asymmetry between the Attacker and its Environment

Does the attacker always have control of choices made during an attack?

E.g. Can the attacker actively chose whether it is killing a master node or data node?

Breaking Asymmetry between the Attacker and its Environment

Does the attacker always have control of choices made during an attack?

E.g. Can the attacker actively chose whether it is killing a master node or data node?

Impact of External Refinement on Quantative Analysis: Max Damage

What is the optimal attack strategy?

Trees Related by Specialisation

Additive Linear Logic in the Sequent Calculus

MALL (Girard 1993):

$$\frac{}{\vdash \overline{a}, a} \ \, \text{axiom} \qquad \frac{\vdash P_i, R}{\vdash P_1 \oplus P_2, R} \ \, \oplus, \ \, i \in \{1, 2\} \qquad \frac{\vdash P, R \ \, \vdash Q, R}{\vdash P \& Q, R} \ \, \& \qquad \frac{\vdash Q, P}{\vdash P, Q} \ \, \text{exchange}$$

De Morgan dualities:

$$\overline{P \& Q} = \overline{P} \oplus \overline{Q}$$
 $\overline{P \oplus Q} = \overline{P} \& \overline{Q}$ $\overline{\overline{a}} = a$

Linear implication $(P \multimap Q)$:

$$\vdash \overline{P}, Q$$

Proof of Specialisation between Attack Trees

$$\frac{\frac{-\overline{a}, \overline{a} \text{ axiom}}{+\overline{a}, \overline{a} \oplus b} \oplus \frac{\overline{+\overline{a}, \overline{a} \text{ axiom}}}{+\overline{a}, \overline{a} \oplus c} \oplus \underbrace{\frac{\overline{+\overline{b}, b} \text{ axiom}}{+\overline{b}, \overline{a} \oplus b} \oplus \frac{\overline{+\overline{c}, c} \text{ axiom}}{+\overline{b} \oplus \overline{c}, \overline{a} \oplus c} \oplus \underbrace{\frac{\overline{-\overline{c}, c} \text{ axiom}}{+\overline{b} \oplus \overline{c}, \overline{a} \oplus c} \oplus \overline{+\overline{b} \oplus \overline{c}, \overline{a} \oplus c} \oplus \underbrace{\frac{\overline{-\overline{c}, c} \text{ axiom}}{+\overline{b} \oplus \overline{c}, \overline{a} \oplus c} \oplus \overline{+\overline{b} \oplus \overline{c}, \overline{a} \oplus c} \oplus \underbrace{+\overline{b} \oplus \overline{$$

Uncertaintly in Environment and Attributes: All Strategies Preserved

Are Choices External in Schneier's Example?

Note: do not prune tree since find writen combo not impossible.

Conclusion

Specialisation useful for comparing attack trees that are not necessarily equal.

Semantics for each class provided by embedding in (extensions of) Linear Logic.

- Asymmetry between **Attacker** and **Environment** broken by marking *external* choices.
- Even without probabilities, specialisation is sensitive to *uncertain information*.

... relevant to Moving Target Defence?