Deciding the Non-Emptiness of Attack trees

Maxime Audinot, Sophie Pinchinat, Frangois Schwarzentruber,
Florence Wacheux

Univ. Rennes, IRISA, CNRS

GraMSec 2018

Introduction

Non-Emptiness of attack trees: Relevance

But is the attack ajasao realizable?

Attack trees always seem non-empty:

ajasap is an attack

Maybe executing action a; consumes the
resource required to execute as.

We need a model S of the system.

Non-emptiness of an attack tree w.r.t. a system S
Is there an attack described by the tree that is realizable in S?

Maxime Audinot, Sophie Pinchinat, Francois Schwarzentruber, Florence Wacheux 2/24

Formal Setting

Outline

e Formal Setting

Maxime Audinot, Sophie Pinchinat, Francois Schwarzentruber, Florence Wacheux 3/24

Formal Setting State-based attack trees

Attack trees
Action-based trees
(classical) State-based trees
<D @ more recent
LD
@ homogeneous formalism
Gavny - (o8) .
IS @ a system-based semantics
() @ (@) (@) [APK17]

Definition (Attack tree)

T 1= (t,77) | OR(7,7) | SAND(7, 7) | AND(7, 7) | AND(7, 7, 7) | AND(7, 7,7, 7) | ...
where ¢,y € Prop.

D
<D @

Maxime Audinot, Sophie Pinchinat, Francois Schwarzentruber, Florence Wacheux 4/24

Model of the system

Definition (Labeled transition system)

A labeled transition system over Prop is a tuple S = (S, —, 1), where
@ S finite set of states @ 1:S — 2P™P |apeling function

@ —C S x S transition relation Write s = p whenever p € A(s).

Prop = {t1, 2,3, t4,¥1, Y2, 73, v4)

Y3, l2,l4 V3,4

A(s0) = {11}, A(s1) = {y1, 12,13}, A(S2) = {y2, 13} ...

Maxime Audinot, Sophie Pinchinat, Francois Schwarzentruber, Florence Wacheux 5/24

Paths in a label transition system

Definition (Paths)

A pathin S'is a sequence 7 = sp.. .. Sy of consecutive states in S.
n.first == sg and m.last := s,

Write Paths(S) for the set of paths in S.

T = S0S1S3S5S6Sg
n.first = s
n.last = sg

Y3, 2,14 Y3, L4

Maxime Audinot, Sophie Pinchinat, Francois Schwarzentruber, Florence Wacheux 6/24

Formal Setting Semantics of attack trees

Paths concatenation
Concatenation of paths 71 and n» possible whenever ry.last = no.first
71| So| 81 52[85 |
e

T4 '7T2‘ So‘ 81‘ SQ‘ 85’?7‘ Sg ‘

For M4, 1> C PathS(S), define M4-My := {m1-7m2 | 71 € 1 and mo € T5}.

Maxime Audinot, Sophie Pinchinat, Francois Schwarzentruber, Florence Wacheux 7/24

Formal Setting Semantics of attack trees

Path parallel composition

Informal

7| 0| $1] 2| 85| 7] s | 7| So| 51] 52| e[57] 58 |

(a) A parallel composition. (b) Not a parallel composition.

For M4,...,MN, € Paths(S), define ®,(M4,M2...,My) by
{m|x is a parallel composition of some 71 € 4, ..., 71, € [y}.

Maxime Audinot, Sophie Pinchinat, Francois Schwarzentruber, Florence Wacheux 8/24

Formal Setting Semantics of attack trees

Path semantics of an attack tree [APK17]

Definition ([7]® ¢ Paths(S))
@ [{t,y)]® = {n € Paths(S) | n.first = ¢ and .last |= v}

@ [OR(r1,72)]% = [r1]° U [r2]®

(*] [[SAND(T1,T2)]]S = [[T1]]S-[[T2]]S

@ [AND(74,...,7)]° = @n([r1]5. ..., [tn]®)

V3,2, L4 V3 t4

[7]® = {S0S15285, S0S1 5255, S0515356Ss. - - -}

Maxime Audinot, Sophie Pinchinat, Francois Schwarzentruber, Florence Wacheux 9/24

The non-emptiness problem

Outline

© The non-emptiness problem

Maxime Audinot, Sophie Pinchinat, Francois Schwarzentruber, Florence Wacheux 10/24

The non-emptiness problem

The decision problem Non-EMPTINESS

Definition (NoN-EMPTINESS)

Input: a system S and an attack tree 7.
Output: [7]S # 0?

Non-empTINESS iS NP-complete.

Proof:
@ Non-EmpTINESS is NP-easy:

e compute an abstraction of the path semantics
@ guess and check a paths corresponding with the abstract semantics

@ Non-empTiNESs is NP-hard: Reduction of SAT (NP-complete by [Coo71])

Maxime Audinot, Sophie Pinchinat, Francois Schwarzentruber, Florence Wacheux 11/24

The non-emptiness problem

Non-emMpTINESS iS NP-easy

Abstracting the path semantics

Recall the path semantics:

[, Y)]° = {7 € Paths(S) | n.first = « and n.last =)

The path semantics is not adequate for “computation”, as any cycle in S
yields infinitely many paths.

The abstract semantics retains only end-states of paths in [(t, y)]°.

[Y)]5 = (152181 = cand s; =)

Maxime Audinot, Sophie Pinchinat, Francois Schwarzentruber, Florence Wacheux 12/24

The non-emptiness problem

Non-emMpTINESS iS NP-easy

Abstract semantics

Definition ([]S,, € %)

® [(LY]5e = (s1521 81 = rand sz k=)
° [[OR(T1’T2) abs [[T1]]abs U [[Tz]]abs

o [SAND(r1,72)[S . = [m1]S,, [r2]S,

@ How about AND?

Vocabulary
Call word any sequence u € S* (that may not be a path).

Maxime Audinot, Sophie Pinchinat, Francois Schwarzentruber, Florence Wacheux 13/24

The non-emptiness problem

Non-emMpTINESS iS NP-easy

Abstract semantics for AND

Definition (Shuffle)

u shuffles uy, ..., u, whenever:
oarivation) U TBREIRE

@ (Linearization) u is composed of all the
states occurring in uy, ..., u, with Uy
preserved precedence.

@ (Covering) Every sequence of two
consecutive states in u is between the Us
occurrence of u.first and u;.last for some j.

Definition
[AND(71, ..., 7n)]S, = {ulu shuffles some uy € [T4]5.. ..., Un € [Ta]S..)-

abs

Maxime Audinot, Sophie Pinchinat, Francois Schwarzentruber, Florence Wacheux 14/24

The non-emptiness problem

Algorithm for Non-EMPTINESS

Guess u € [r]5

Input: An attack tree 7 and a transition system S
Output: A word u € [7],
switch T do
case {t,y) do
guess 51,57 € 5;
check ¢ € A(sy) and y € A(sy);
return s;s»;
end
case OR(t;,7;) do
guess i € {1,2);
return guessAbstractPath(r;, S);
end
case SAND(7.7;) do
uy := guessAbstractPath(r,,S);
uy := guessAbstractPath(r:, S);
check uy.last = wy. first;
return u; uy

end
case AND(t,...,7,) do
u; »= guessAbstractPath(r;,S)foreach 1 <i <n;
guess u, alinearization of wy, ..., u,;
forall lerters s of u except u. first and u.last do
check there exists j, k € [1, n] such that either s is strictly between u;. first
and uj.last in u, or s equals both ;. first and w.last
end
return u;

end
end
Algorithm 1: guessAbstractPath(r, S).

Maxime Audinot, Sophie Pinchinat, Francois Schwarzentruber, Florence Wacheux

15/24

The non-emptiness problem

Algorithm for Non-EMPTINESS

Check that u can instanciate some path

Input: An attack tree r and a transition system S
Output: Accept whenever [[?]]5 #0.
u := guessAbstractPath(r,S);
foreach s, s, successive in u do
| check reachs(s, 52)
end

accept
Algorithm 2: emptiness(t, S).

Non-empTINESS IS NP-complete.

Maxime Audinot, Sophie Pinchinat, Francois Schwarzentruber, Florence Wacheux 16/24

Non-empTINESS iS NP-hard

NP-hardness arise already for very simple attack trees of the form
AND(<L1 s ')’1 >’ sy <Ln’ 7n>)

Proposition (From [APK17])

Given a system S and t1,v1,...tn,vn € Prop, it is NP-hard to decide
[[AND(<L1 s ')’1 >9 ceey <Ln, 7n>)]]8 ;ﬁ @

Proof: By reduction of SAT (NP-complete by [Coo71]).

SAT problem

Input: Cy,..., Ck clauses over Boolean variables p, q,r,. ..
Output: is there a valuation of p, g, r, ... that satisfies C4, ..., C?

We define a polynomial translation from SAT inputs to Non-EMPTINESS inputs.

Maxime Audinot, Sophie Pinchinat, Francois Schwarzentruber, Florence Wacheux 17/24

NP-hardness of [AND({t1,¥1), ... {tn, ¥n))]® # 0?

SAT problem

Input: Cy,..., Ck clauses over Boolean variables p, q,r, ...
Output: is there a valuation of p, g, r, ... that satisfies Cq, ..., C?

Reduction of SAT: From input Cy, ..., Cx over p,q,r, ... of SAT,
define system S (of polynomial size) over Prop = {¢, Cy,..., Ck} s.1.

Ci,...,Cx € SAT iff [AND((t, C1), ... {1, Ck))]° # 0

Maxime Audinot, Sophie Pinchinat, Francois Schwarzentruber, Florence Wacheux 18/24

NP-hardness of [AND({t1,¥1), ... {tn, ¥n))]® # 0?

SAT problem

Input: Cy,..., Ck clauses over Boolean variables p, q,r, ...
Output: is there a valuation of p, g, r, ... that satisfies Cq, ..., C?

Reduction of SAT: From input Cy, ..., Cx over p,q,r, ... of SAT,
define system S (of polynomial size) over Prop = {¢, Cy,..., Ck} s.1.

Ci,...,Cx € SAT iff [AND((t, C1), ... {1, Ck))]° # 0

DA g

Co=qVr

e‘e e [AND(<t, C1), e, C2))]® = {par, pa, - . .}
L Co

Maxime Audinot, Sophie Pinchinat, Francois Schwarzentruber, Florence Wacheux 18/24

The non-emptiness problem for AND-free attack trees

Outline

e The non-emptiness problem for AND-free attack trees

Maxime Audinot, Sophie Pinchinat, Francois Schwarzentruber, Florence Wacheux 19/24

The non-emptiness problem for AND-free attack trees

The sub-polynomial AND-free case

Definition (NoN-EMPTINESS 4f)

Input: a system S and an AND-free attack tree v
Output: [7]S # 0?

Non-empTINESS af iS NLOGSPACE-complete.

Proof:
@ Non-empTiNESS a7 IS NLOGSPACE-hard.
Trivial logspace reduction from the s—t-connectivity in a graph
(NLOGSPACE-complete by [Jon75]) to the non-emptiness of a leaf
attack tree (¢, y).

@ Non-empTINESS af IS NLOGSPACE-easy

Maxime Audinot, Sophie Pinchinat, Francois Schwarzentruber, Florence Wacheux 20/24

Non-eMPTINESS 4r IS NLOGSPACE-easy

<3 >

T An OR-resolution of T

Proposition
e [[T]]S iff there exists an OR-resolution v/ of T s.t. w € [[T']]S

Guess simultaneously 7’ and r € [']® during a depth-first search of 7.
Require to store (logarithmic memory):

@ 1nodeofr

@ 2 states of S

Maxime Audinot, Sophie Pinchinat, Francois Schwarzentruber, Florence Wacheux 21/24

Algorithm for NoN-EMPTINESS af

Input: An AND-free attack tree T and a transition system §
Output: Accept whenever [7]¥ # 0.
guess s € 5;
node :=root of 1;
lastOp := down;
repeat
if node = {1, y) then
check s [¢;
loop
guess whether we break the loop or not; if yes, break the loop;
guess s’ € § with s — 57;
5=
endLoop
check s = y;
end
if (lastOp = down) or (lastOp = over) then
Try to perform and update node with operation down, over, up in priority;
‘ Store in lastOp the last performed operation
else
Try to perform and update node with operation over, up in priority;
‘ Store in lastOp the last performed operation
end
until (nede = root of) and (lastOp = up);
accept

Algorithm 5: emptinessNLanpfre (7.5).

Maxime Audinot, Sophie Pinchinat, Francois Schwarzentruber, Florence Wacheux 22/24

Conclusion

Outline

e Conclusion

Maxime Audinot, Sophie Pinchinat, Francois Schwarzentruber, Florence Wacheux 23/24

Conclusion

Conclusion

@ Achievements

e Deciding []® # 0 is NP-complete.
e Deciding [7]® # 0 for an AND-free attack tree is NLOGSPACE-complete.

@ AND is a really complex operator!

@ Future work

e Non-emptiness of action-based attack trees.
Our results should still hold.

e Other decision problems, e.g.

[r1]° = [r2]°7

Maxime Audinot, Sophie Pinchinat, Francois Schwarzentruber, Florence Wacheux 24/24

Conclusion

ﬁ Maxime Audinot, Sophie Pinchinat, and Barbara Kordy.
Is my attack tree correct?
In Simon N. Foley, Dieter Gollmann, and Einar Snekkenes, editors,
Computer Security — ESORICS 2017, pages 83—102, Cham, 2017.
Springer International Publishing.

[§ Stephen A Cook.
The complexity of theorem-proving procedures.
In Proceedings of the third annual ACM symposium on Theory of
computing, pages 151-158. ACM, 1971.

[@ Neil D Jones.
Space-bounded reducibility among combinatorial problems.
Journal of Computer and System Sciences, 11(1):68-85, 1975.

Maxime Audinot, Sophie Pinchinat, Francois Schwarzentruber, Florence Wacheux 25/24

	Formal Setting
	The non-emptiness problem
	The non-emptiness problem for AND-free attack trees
	Conclusion

