```
In [t](), s=this.interval, o=t=="next"?"left":"right
in in this.$element.find(".item")[u](), f=e.Event("
cators.length&&(this.$indicators.find(".active")
children()[a.getActiveIndex()]);t&&t.addClass("a
ttrigger(f);if(f.isDefaultPrevented())return;i.
transition.end, function(){i.removeClass([t,o].
ding_l1,setTimeout(function()){a.$element.trigge
busClass("active"),i.addClass("active"),this.sl
husels
```

CSIRA: A method for analysing the risk of cybersecurity incidents

Aitor Couce Vieira¹³, Siv Hilde Houmb², David Rios Insua³

¹Universidad Rey Juan Carlos, Spain

²Secure-NOK AS, Norway

³Instituto de Ciencias Matemáticas, Centro Superior de Investigaciones Científicas, Spain

Contents

GIRA

General model for incident risk analysis

CSIRA

Simplified application of GIRA for cybersecurity

GIRA: General model for incident risk analysis

GIRA: General model for incident risk analysis

Risk calculation

$$p(\{o_b\}, \{i_j\}, \{c_k\}, m, t) = p(o_1, \dots, o_B, \dots, c_1, \dots, c_K, m, t) =$$

$$= \left[\prod_{b=1}^B p(o_b | \{i_j \in I_b\})\right] \left[\prod_{i=1}^J p(i_j | \{c_k \in C_j\}, \{s_z \in S_j\})\right] \left[\prod_{c=1}^K p(c_k | m, r)\right] p(m | t, r) p(t)$$

Risk evaluation

Maximising expected utility: $r^* : \max \psi(r)$

$$\psi(r) = \int \cdots \int u(\{o_b\}) p(\{o_b\}, \{i_j\}, \{c_k\}, m, t) dt dm dc_K \dots do_1$$

... or other alternative method: e.g., prospect theory.

CSIRA: Simplification of GIRA for cybersecurity

Framework for simple risk analysis

And non-expert use

Likelihood: certain, possible, rare and impossible

Risk evaluation: ordering risk scenarios derived from the incident

Example incident

CSIRA: Risk calculation example (I)

Likelihood	Probability
Certain	P(s) = 1
Possible	$P(s) = (\alpha, 1)$
Rare	$P(s) = (0, \alpha)$
Impossible	P(s) = 0

CSIRA: Risk calculation example (II)

Possible in $(1\times10^{-2}, 9.99\times10^{-1})$ Rare Level 1 in $(1\times10^{-12}, 9.99\times10^{-11})$ Rare Level 2 in $(1\times10^{-22}, 9.99\times10^{-21})$

. . .

Event	User input	Numerical marginal probability	Numerical overall probability	Output to user
Event 1	Possible	5×10 ⁻²	5×10 ⁻²	Possible
Event 2	Rare	6×10 ⁻¹²	3×10 ⁻¹³	Rare
Event 3	Rare Level 4	3×10 ⁻⁴²	9×10 ⁻⁵⁵	Rare Level 5

Alternatively, for simplification: Rarer than rare for Level 2 and higher

CSIRA: Risk calculation example (III)

CSIRA: Risk evaluation example

Elicitation of preferences for the response scenarios only.

E.g., for a Bayesian Network with 2 states in the response node and 3 objective nodes with three states:

- Complete utility elicitation (with certainty) requires comparing 27 scenarios ...
- ... and at least 2/3 times more with uncertainty
- **CSIRA**: Just eliciting the preferences for the responses. In the example, comparing 2 scenarios.

CSIRA: Risk evaluation example

... e.g., in the example case, compare between two responses:

Response: Leave it						
Monetary objective status	Monetary objective likelihood	Safety objective status	Safety objective likelihood			
€0	Possible	Does not create safety risk	Possible			
€ 100.000 - € 1.000.000	Rare	Creates safety risk	Rare Level 2			
€ 1.000.000 >	Rarer Level 5					

Response: Re-installation						
Monetary impact	Monetary objective likelihood	Safety impact	Safety objective likelihood			
€0	Impossible	Does not create safety risk	Certain			
€ 100.000 - € 1.000.000	Certain	Creates safety risk	Impossible			
€ 1.000.000 >	Impossible					

On-going / future work

R framework for GIRA-based risk studies

Small program for CSIRA/simple-GIRA

Mature/evolve them in real applications

Support

AXA-ICMAT Chair | H2020 CYBECO Project | RFFVEST CIRFOG Project | MINECO | COST Action

```
In [t](), s=this.interval, o=t=="next"?"left":"right
in in this.$element.find(".item")[u](), f=e.Event("
cators.length&&(this.$indicators.find(".active")
children()[a.getActiveIndex()]);t&&t.addClass("a
ttrigger(f);if(f.isDefaultPrevented())return;i.
transition.end, function(){i.removeClass([t,o].
ding_l1,setTimeout(function()){a.$element.trigge
busClass("active"),i.addClass("active"),this.sl
husels
```

CSIRA: A method for analysing the risk of cybersecurity incidents

Aitor Couce Vieira¹³, Siv Hilde Houmb², David Rios Insua³

¹Universidad Rey Juan Carlos, Spain

²Secure-NOK AS, Norway

³Instituto de Ciencias Matemáticas, Centro Superior de Investigaciones Científicas, Spain