
Evil twins:
Handling repetitions in attack–defense trees

A survival guide

Angèle Bossuat and Barbara Kordy

GraMSec 2017

Attack–defense trees

Outline

1 Attack–defense trees

2 Common issues

3 Well-formedness

4 Conclusion

GraMSec 2017 2

Attack–defense trees The model

Definition

Attack–defense tree (ADTree)
A tree-like representation of a security scenario involving two actors:
an attacker and a defender

Nodes represent the actors’ goals

Goals can be refined disjunctively (OR) or conjunctively (AND)

Goals of one actor counter the goals of the other one

ADTrees extend classical attack trees with the nodes of the defender
whose goal is to protect the modeled system

GraMSec 2017 3

Attack–defense trees The model

ADTree for passing the examination

exam attack

get exam

access
laptop

find
exam

store
exam

print save on usb

get solutions

access
laptop

find
solutions

store
solutions

print save on usb encrypt

break

memorize solutions

GraMSec 2017 4

Attack–defense trees The model

ADTree for passing the examination

exam attack

get exam

access
laptop

find
exam

store
exam

print save on usb

get solutions

access
laptop

find
solutions

store
solutions

print save on usb encrypt

break

memorize solutions

Refinement

GraMSec 2017 4

Attack–defense trees The model

ADTree for passing the examination

exam attack

get exam

access
laptop

find
exam

store
exam

print save on usb

get solutions

access
laptop

find
solutions

store
solutions

print save on usb encrypt

break

memorize solutions

Countermeasures

GraMSec 2017 4

Attack–defense trees The model

ADTree for passing the examination

exam attack

get exam

access
laptop

find
exam

store
exam

print save on usb

get solutions

access
laptop

find
solutions

store
solutions

print save on usb encrypt

break

memorize solutions

Basic actions = non-refined nodes

GraMSec 2017 4

Attack–defense trees The model

ADTrees as terms

p – proponent – the root actor
o – opponent – the other actor
B – set of basic actions partitioned into Bp and Bo

ADTrees are terms of the form T p generated by the grammar

T p : bp | ORp(T p, . . . ,T p) | ANDp(T p, . . . ,T p) | Cp(T p,T o)
T o : bo | ORo(T o, . . . ,T o) | ANDo(T o, . . . ,T o) | Co(T o,T p)

where bp ∈ Bp, bo ∈ Bo

GraMSec 2017 5

Attack–defense trees The model

Example

exam attack

get exam

access
laptop

find
exam

store
exam

print save on usb

get solutions

access
laptop

find
solutions

store
solutions

print save on usb encrypt

break

memorize solutions

ANDp
(
ANDp

(
lapt, ex, ORp(pr, usb

))
,

ANDp
(
lapt, sol, Cp(ORp(pr, usb), Co(enc, break)

))
,

memo
)

GraMSec 2017 6

Attack–defense trees Formal semantics

Existing formalizations of ADTrees

access office

access building

break window lock-picking

lock-picking

Propositional semantics
Interpreting ADTrees as Boolean formulæ
(window ∨ pick) ∧ pick

Multiset semantics
Interpreting ADTrees as sets of multisets
{{|window, pick|}, {|pick, pick|}}

GraMSec 2017 7

Attack–defense trees Formal semantics

Existing formalizations of ADTrees

access office

access building

break window lock-picking

lock-picking

Propositional semantics
Interpreting ADTrees as Boolean formulæ
(window ∨ pick) ∧ pick

Multiset semantics
Interpreting ADTrees as sets of multisets
{{|window, pick|}, {|pick, pick|}}

GraMSec 2017 7

Attack–defense trees Quantification

Bottom-up algorithm for quantifying attacks

An attribute α is composed of
A set of values Dα

A basic assignment βα : B→ Dα

An attribute domain Aα = (Dα, ORp
α, ANDp

α, ORo
α, ANDo

α, C
p
α, C

o
α), where

OPS
α : Dk

α → Dα is an internal operation on Dα, for OP ∈ {OR, AND, C}

The bottom-up algorithm for α assigns values from Dα to ADTrees

α(b) = βα(b) α
(
OPs(T s

1 , . . . ,T s
k)
)

= OPs
α

(
α(T s

1), . . . , α(T s
k)
)

GraMSec 2017 8

Attack–defense trees Quantification

Minimal time to attack

Atime = (N ∪ {+∞},min,+,+,min,+,min)

GraMSec 2017 9

Common issues

Outline

1 Attack–defense trees

2 Common issues

3 Well-formedness

4 Conclusion

GraMSec 2017 10

Common issues Refinement

Refinement issue

Incomplete refinement

access laptop

username password

Complete refinement

access laptop

username password access

GraMSec 2017 11

Common issues Refinement

Refinement issue

Incomplete refinement

access laptop

username password

Complete refinement

access laptop

username password access

GraMSec 2017 11

Common issues Counter

Counter issue

Incorrect countering

get password

post-it

security training

soc. engineering

brute force

Correct countering

get password

post-it

security training

brute force soc. engineering

GraMSec 2017 12

Common issues Counter

Counter issue

Incorrect countering

get password

post-it

security training

soc. engineering

brute force

Correct countering

get password

post-it

security training

brute force soc. engineering

GraMSec 2017 12

Common issues Repetitions

Repeated labels issue

print – time is different for the two print actions

exam attack

get exam

access
laptop

find
exam

store
exam

print save on usb

get solutions

access
laptop

find
solutions

store
solutions

print save on usb encrypt

break

memorize solutions

GraMSec 2017 13

Common issues Repetitions

Repeated labels issue

save on usb – one needs to save twice

exam attack

get exam

access
laptop

find
exam

store
exam

print save on usb

get solutions

access
laptop

find
solutions

store
solutions

print save on usb encrypt

break

memorize solutions

GraMSec 2017 13

Common issues Repetitions

Repeated labels issue

access laptop – one needs to access the laptop only once

exam attack

get exam

access
laptop

find
exam

store
exam

print save on usb

get solutions

access
laptop

find
solutions

store
solutions

print save on usb encrypt

break

memorize solutions

GraMSec 2017 13

Well-formedness

Outline

1 Attack–defense trees

2 Common issues

3 Well-formedness

4 Conclusion

GraMSec 2017 14

Well-formedness Two types of repeated labels

Clones and twins

Cloned nodes
For two nodes with the same label, when activating one means activating
the other one, we say that the two nodes are cloned.

Cloned nodes represent exactly the same instance of an action
Deactivating one of the cloned nodes deactivates all of them

Example: access laptop node

Twin nodes
For two nodes with the same label, when activating one does not activate
the other one, we say that the two nodes are twins.

Each individual twin node represents a separated instance of an action
All twin nodes need to be deactivated separately

Example: save on usb node

GraMSec 2017 15

Well-formedness Two types of repeated labels

Clones and twins

Cloned nodes
For two nodes with the same label, when activating one means activating
the other one, we say that the two nodes are cloned.

Cloned nodes represent exactly the same instance of an action
Deactivating one of the cloned nodes deactivates all of them

Example: access laptop node

Twin nodes
For two nodes with the same label, when activating one does not activate
the other one, we say that the two nodes are twins.

Each individual twin node represents a separated instance of an action
All twin nodes need to be deactivated separately

Example: save on usb node

GraMSec 2017 15

Well-formedness Two types of repeated labels

Clones and twins

Cloned nodes
For two nodes with the same label, when activating one means activating
the other one, we say that the two nodes are cloned.

Cloned nodes represent exactly the same instance of an action
Deactivating one of the cloned nodes deactivates all of them

Example: access laptop node

Twin nodes
For two nodes with the same label, when activating one does not activate
the other one, we say that the two nodes are twins.

Each individual twin node represents a separated instance of an action
All twin nodes need to be deactivated separately

Example: save on usb node

GraMSec 2017 15

Well-formedness Two types of repeated labels

Clones and twins

Cloned nodes
For two nodes with the same label, when activating one means activating
the other one, we say that the two nodes are cloned.

Cloned nodes represent exactly the same instance of an action
Deactivating one of the cloned nodes deactivates all of them

Example: access laptop node

Twin nodes
For two nodes with the same label, when activating one does not activate
the other one, we say that the two nodes are twins.

Each individual twin node represents a separated instance of an action
All twin nodes need to be deactivated separately

Example: save on usb node
GraMSec 2017 15

Well-formedness Labeling for repeated labels

Motivation

Our goal is to define well-formed ADTrees in a way to

Allow for the re-use of libraries of trees

Enable merging of several trees

Prohibit peculiar, non-intuitive labels resulting from relabeling

Keep the attribute basic assignment as concise as possible

Distinguish clones from twins

GraMSec 2017 16

Well-formedness Labeling for repeated labels

Extended labeling

Labels as pairs: goal + index
Labels are pairs in G× Γ, where

G is a typed set of goals containing B
Γ is a finite set of indices

Old label g becomes a pair (g, γ)

g ∈ G describes the goal to be achieved
γ ∈ Γ is an index allowing us to differentiate clones from twins

access office

access building

break window lock-picking

lock-picking

(access office, ι)

(access building, ι)

(break window, ι) (lock-picking, ι)

(lock-picking, γ)

GraMSec 2017 17

Well-formedness Labeling for repeated labels

Extended labeling

Labels as pairs: goal + index
Labels are pairs in G× Γ, where

G is a typed set of goals containing B
Γ is a finite set of indices

Old label g becomes a pair (g, γ)

g ∈ G describes the goal to be achieved
γ ∈ Γ is an index allowing us to differentiate clones from twins

access office

access building

break window lock-picking

lock-picking

(access office, ι)

(access building, ι)

(break window, ι) (lock-picking, ι)

(lock-picking, γ)

GraMSec 2017 17

Well-formedness Labeling for repeated labels

Extended labeling

Labels as pairs: goal + index
Labels are pairs in G× Γ, where

G is a typed set of goals containing B
Γ is a finite set of indices

Old label g becomes a pair (g, γ)

g ∈ G describes the goal to be achieved
γ ∈ Γ is an index allowing us to differentiate clones from twins

access office

access building

break window lock-picking

lock-picking

(access office, ι)

(access building, ι)

(break window, ι) (lock-picking, ι)

(lock-picking, γ)

GraMSec 2017 17

Well-formedness Definition

Grammar for well-formed ADTrees

Well-formed ADTrees are generated by the grammar

T p : (bp, γ) | ORp[(g, γ)](T p, . . . ,T p)
| ANDp[(g, γ)](T p, . . . ,T p)
| Cp(T p,T o)

T o : (bo, γ) | ORo[(g, γ)](T o, . . . ,T o)
| ANDo[(g, γ)](T o, . . . ,T o)
| Co(T o,T p)

where bp ∈ Bp, bo ∈ Bo

GraMSec 2017 18

Well-formedness Definition

Well-formed ADTree

An ADTree is well-formed iff the following conditions are satisfied

T is of the proponent’s type

T p : (bp, γ) | ORp[(g, γ)](T p, . . . ,T p)
| ANDp[(g, γ)](T p, . . . ,T p)
| Cp(T p,T o)

GraMSec 2017 19

Well-formedness Definition

Well-formed ADTree

An ADTree is well-formed iff the following conditions are satisfied

All refinements are correct and complete

Let gi be the goal of the root node of Ti

ORs[(g, γ)](T s
1 , . . . ,T s

k)
Goal g is achieved iff at least one of the subgoals gi is achieved
ANDs[(g, γ)](T s

1 , . . . ,T s
k)

Goal g is achieved iff all of the subgoals gi are achieved

GraMSec 2017 19

Well-formedness Definition

Well-formed ADTree

An ADTree is well-formed iff the following conditions are satisfied

Countering subtree disables the goal of the node it is attached to

Let gi be the goal of the root node of Ti

Cs(T s
1 ,T s̄

2)
If g2 is achieved then g1 cannot be achieved

GraMSec 2017 19

Well-formedness Definition

Well-formed ADTree

An ADTree is well-formed iff the following conditions are satisfied

All counters are correctly placed

Let gi be the goal of the root node of Ti

Cs(T s
1 , C

s̄(T s̄
2 ,T s

3))
Achieving g3 does not achieve any goal of type s from T1,
in particular, achieving g3 does not replace achieving g1

GraMSec 2017 19

Well-formedness Definition

Well-formed ADTree

An ADTree is well-formed iff the following conditions are satisfied

Cloned nodes represent the same events

Trees rooted in cloned nodes are equivalent wrt the used semantics

Trees rooted in cloned nodes yield the same attribute value

GraMSec 2017 19

Well-formedness Definition

Well-formed ADTree

An ADTree is well-formed iff the following conditions are satisfied

Twin nodes represent similar events

Trees rooted in twin nodes have equivalent refining subtrees

The refining subtrees of trees rooted in twin nodes yield the same
attribute value

GraMSec 2017 19

Well-formedness Definition

Well-formed example

(exam attack, ι)

(get exam, ι)

(access laptop, ι) (find exam, ι) (store exam, ι)

(print exam, ι) (save on usb, ι)

(get sol, ι)

(access laptop, ι) (find sol, ι) (store sol, ι)

(print sol, ι) (save on usb, γ) (encrypt, ι)

(break, ι)

(memorize sol, ι)

The two print nodes have different goals now

The two access laptop nodes are clones (the same indices)

The two save on usb nodes are twins (different indices)

GraMSec 2017 20

Well-formedness Definition

Well-formed example

(exam attack, ι)

(get exam, ι)

(access laptop, ι) (find exam, ι) (store exam, ι)

(print exam, ι) (save on usb, ι)

(get sol, ι)

(access laptop, ι) (find sol, ι) (store sol, ι)

(print sol, ι) (save on usb, γ) (encrypt, ι)

(break, ι)

(memorize sol, ι)

The two print nodes have different goals now

The two access laptop nodes are clones (the same indices)

The two save on usb nodes are twins (different indices)

GraMSec 2017 20

Well-formedness Definition

Well-formed example

(exam attack, ι)

(get exam, ι)

(access laptop, ι) (find exam, ι) (store exam, ι)

(print exam, ι) (save on usb, ι)

(get sol, ι)

(access laptop, ι) (find sol, ι) (store sol, ι)

(print sol, ι) (save on usb, γ) (encrypt, ι)

(break, ι)

(memorize sol, ι)

The two print nodes have different goals now

The two access laptop nodes are clones (the same indices)

The two save on usb nodes are twins (different indices)

GraMSec 2017 20

Well-formedness Semantics

Set semantics for well-formed ADTrees

Replace the multisets by the sets of pairs (goal, index)

Classical multiset semantics

access office

access building

break window lock-picking

lock-picking

{
{|window, pick|},

{|pick, pick|}
}

Set semantics for well-formed ADTrees

(access office, ι)

(access building, ι)

(break window, ι) (lock-picking, ι)

(lock-picking, γ)

{
{(window, ι), (pick, γ)},

{(pick, ι), (pick, γ)}
}

GraMSec 2017 21

Well-formedness Semantics

Set semantics for well-formed ADTrees

Replace the multisets by the sets of pairs (goal, index)

Classical multiset semantics

access office

access building

break window lock-picking

lock-picking

{
{|window, pick|},

{|pick, pick|}
}

Set semantics for well-formed ADTrees

(access office, ι)

(access building, ι)

(break window, ι) (lock-picking, ι)

(lock-picking, γ)

{
{(window, ι), (pick, γ)},

{(pick, ι), (pick, γ)}
}

GraMSec 2017 21

Well-formedness Semantics

Quantification of well-formed ADTrees

Quantification on the set semantics
Let Aα = (Dα, ORp

α, ANDp
α, ORo

α, ANDo
α, C

p
α, C

o
α) be an attribute domain

Basic assignment
Assign values to basic goals
Cloned and twin nodes get the same value

Compute the set semantics
S(T) =

⋃l
i=1

{(⋃ni
j=1{(pij , γij)},

⋃mi
j=1{(oij , γij)}

)}
Compute the value for the entire tree

α(T) = (ORp
α)l

i=1

(
Cp

α

(
(ANDp

α)ni
j=1βα(pij), (ORo

α)mi
j=1βα(oij)

))

GraMSec 2017 22

Conclusion

Outline

1 Attack–defense trees

2 Common issues

3 Well-formedness

4 Conclusion

GraMSec 2017 23

Conclusion Summary

Wrap-up

Problems
Lack of guidelines for the modeler
Simplistic formalizations of ADTrees
Repeated labels

Objectives
Re-usability of libraries
Intuitive labels
Efficient quantification

Solutions
Extended grammar for ADTrees
Definition of cloned and twin nodes
Formalization of well-formed ADTrees

GraMSec 2017 24

Conclusion Summary

Wrap-up

Problems
Lack of guidelines for the modeler
Simplistic formalizations of ADTrees
Repeated labels

Objectives
Re-usability of libraries
Intuitive labels
Efficient quantification

Solutions
Extended grammar for ADTrees
Definition of cloned and twin nodes
Formalization of well-formed ADTrees

GraMSec 2017 24

Conclusion Summary

Wrap-up

Problems
Lack of guidelines for the modeler
Simplistic formalizations of ADTrees
Repeated labels

Objectives
Re-usability of libraries
Intuitive labels
Efficient quantification

Solutions
Extended grammar for ADTrees
Definition of cloned and twin nodes
Formalization of well-formed ADTrees

GraMSec 2017 24

Conclusion Future work

Problems still open

Tool support
Automated creation of ADTrees from a system description
Implementation of well-formedness checker

Expressive power
Preventive and reactive countermeasures
Dependencies between the nodes

GraMSec 2017 25

Conclusion Future work

Problems still open

Tool support
Automated creation of ADTrees from a system description
Implementation of well-formedness checker

Expressive power
Preventive and reactive countermeasures
Dependencies between the nodes

GraMSec 2017 25

Conclusion Future work

Thank you for your attention

Main credits for this work go to Angèle!

GraMSec 2017 26

Conclusion Future work

Thank you for your attention

Main credits for this work go to Angèle!

GraMSec 2017 26

	Attack–defense trees
	Common issues
	Well-formedness
	Conclusion

