

Quantitative Evaluation of Attack Defense Trees

using Stochastic Timed Automata

August 21, 2017

Peter Gjøl Jensen¹ Kim Guldstrand Larsen¹ Axel Legay²
Danny Bøgsted Poulsen³

Department of Computer Science, Aalborg University

INRIA - Rennes

Christian Albrechts Univertät, Kiel

AALBORG UNIVERSITY
DENMARK

inria
INVENTEURS DU MONDE NUMÉRIQUE

Introduction

Motivation

Attack Defense Trees (ADTs) are...

- ▶ Formally well founded,
- ▶ Mathematically simple,
- ▶ Good tool in the box.

Attack Defense Trees **can not**...

- ▶ express quantitative measures (revenue, effort, ...),
- ▶ exhibit temporal behavior,
- ▶ exhibit probabilistic behavior,
- ▶ express variance.

Introduction

Motivation

Attack Defense Trees (ADTs) are...

- ▶ Formally well founded,
- ▶ Mathematically simple,
- ▶ Good tool in the box.

Attack Defense Trees **can not**...

- ▶ express quantitative measures (revenue, effort, ...),
- ▶ exhibit temporal behavior,
- ▶ exhibit probabilistic behavior,
- ▶ express variance.

Real attacks are...

- ▶ having quantitative measures (revenue, effort, ...),
- ▶ time-dependent,
- ▶ highly uncertain,
- ▶ dependent on attacker.

Introduction

Solutions?

Use non ADT formalism

- ▶ Lots of expressive power,
- ▶ Great Tool support,
- ▶ Unfamiliar to users,
- ▶ “Cannons and sparrows”.

Add semantics to ADTs

- ▶ Reasonable expressiveness,
- ▶ Translate into other formalism,
- ▶ Familiar to users,
- ▶ Analytic tools for free!

Introduction

Solution!

Extend ADTs

- ▶ Add time, probabilities and measures,
- ▶ Translate into Timed Automata,
- ▶ Analyze via UPPAAL – and other high-level techniques,
- ▶ Automatize via Python.

ANalysis Of VAriance (ANOVA)

Check for a family of attackers the variance of the effectiveness of defenses.

Introduction

Restriction

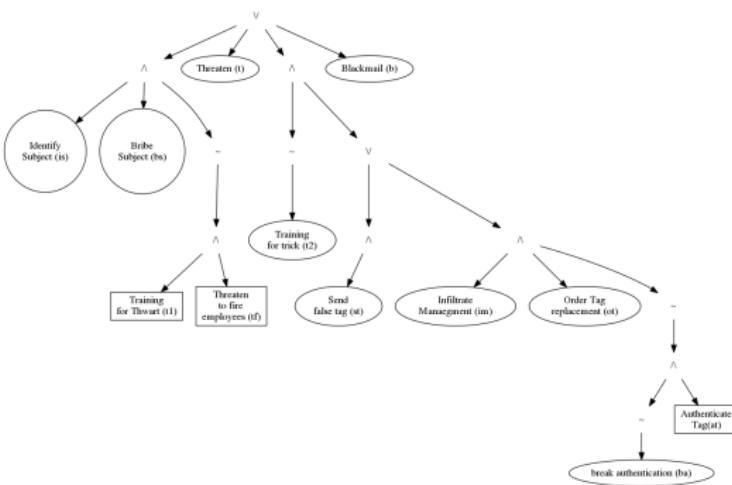
Type System of Aslanyan

We consider only well-formed ADTs – trees in which the attacker does not actively harm himself.

Introduction

Let us model a small shop

What would it take to substitute some RFID-tag in the shop?


Introduction

By example

$$p \in A_d \cup A_a$$

$$t ::= p \mid t \wedge t \mid t \vee t \mid \sim t$$

$$(is \wedge bs \wedge \neg(t1 \wedge tf)) \vee (t) \vee ((\neg t2) \wedge (st \vee (im \wedge ot \wedge \neg((\neg ba) \wedge at)))) \vee (b)$$

Introduction

Attacker Question

Given a set of defensive actions $D \subseteq A_d$, can we select a set of attacks $A \subseteq A_a$ s.t. the attack succeeds?

Defender Question

Can we select a set of defensive actions $D \subseteq A_d$ s.t. for all the attacker choices $A \subseteq A_a$ no attack succeeds?

Introduction

Existing Work

We are not the first

- ▶ Hermanns et al. recently introduced Attack-Defense-Diagrams,
 - ▶ Non-trivial extension/mutation of ADTs,
 - ▶ non-parameterized.
- ▶ Gadyatskaya et. al. extend ADTs with temporal and stochastic semantics,
 - ▶ Close to ADTs,
 - ▶ basis of current work,
 - ▶ non-parameterized.
- ▶ ... both use translation to Timed Automata.

Temporal Semantics

- ▶ Security is a game,
- ▶ Attacker choices are done in sequence,
- ▶ Defender chooses up front.

ADT – Tree-Graph

- ▶ Defines LTS,
- ▶ Rephrase previous questions as model-checking-questions,
- ▶ Reasoning on runs,
- ▶ Attacker is still a subset of attacker actions.

Run

$(v^0, D)(v_1, \alpha_1)(v_2, \alpha_2) \dots (v_n, \dagger)v_n$
where $v^0 = (\emptyset, \emptyset)$ and $v_1, \dots, v_n \in 2^{\mathbb{A}_a} \times 2^{\mathbb{A}_d}$

Timed Temporal Semantics

Duration Function

$\Delta : \mathcal{A}_a \rightarrow \mathcal{B}(\mathbb{R})$ - where $\mathcal{B}(\mathbb{R})$ denotes all possible intervals over \mathbb{R}

Timed Attacker

A timed attacker is thus a tuple $\text{Att}^\tau = (\text{Att}, \Delta)$ where Att is an attacker and Δ is defined as above.

Timed Run

$(v^0, D)(v_1, d_1, \alpha_1)(v_2, d_2, \alpha_2) \dots (v_n, \dagger)v_n$

for all $1 \leq i < n$, $d_i \in \Delta(c(\alpha_i))$ where $c(a) = c(\neg a) = a$.

Timed Temporal Semantics

Attacker Question

Given a set of defensive actions $D \subseteq A_d$, does there exists an attacker s.t. the attack succeeds within τ units of time?

Defender Question

Can we select a set of defensive actions $D \subseteq A_d$ s.t. for all possible attackers, no attack succeeds within τ units of time?

Techniques

Use standard symbolic/polyhedra-based model-checking techniques deployed by UPPAAL.

Stochastic Semantics

Uncertainties

- ▶ Defensive measure not guaranteed to be “in place” (metal detector),
- ▶ Attacker action relies on uncertain information etc (knowledge of vulnerability, skill).
- ▶ Exact duration is infeasible.

Both attacker and defender actions can fail

Stochastic Semantics

Attackers/Defenders

General idea; add probability masses.

Defender

Measures are selected according to a probability mass function

$$\gamma_{\text{Def}} : 2^{\mathcal{A}^d} \rightarrow [0, 1].$$

A stochastic defender is thus a tuple $\text{Def}^S = (\text{Def}, \gamma_{\text{Def}})$.

Attacker

$\text{Att}^S = (\text{Att}^\tau, \gamma_{\text{Att}}, \delta)$ where $\text{Att}^\tau = (\text{Att}, \Delta)$ is a timed attacker,

$\gamma_{\text{Att}} : \mathcal{V} \rightarrow \mathcal{A}_a \cup \{\dagger\} \rightarrow \mathbb{R}$ assigns a probability mass function to each state for selecting the action to perform and

$\delta : \mathcal{A}_a \rightarrow \mathbb{R} \rightarrow \mathbb{R}$ assigns a probability density to the possible execution times of each action

Stochastic Semantics

Requirements

- ▶ Non-zero probabilities for selected actions,
- ▶ Zero-probabilities for non-selected actions.
- ▶ Respect timing intervals.

Defender

$$\gamma_{\text{Def}}(D) \neq 0 \implies D \in \text{Def}(v^{t^0})$$

Attacker

1. if $\gamma_{\text{Att}}(v^t)(a) \neq 0$ then $a \in \text{Att}(v^t)$ and
2. if $\delta(a)(r) \neq 0$ then $r \in \Delta(a)$.

Stochastic Semantics

Environment

Models outside influence (success-rate in bribing etc.)

$$\text{Env}_a : \{a, \neg a\} \rightarrow]0, 1[$$

Stochastic Semantics

Over Runs

Interval I , successors-state v' and action α , the probability of attacker choices

$$G_v^{\text{Att}^S | \text{Def}^S | \text{Env}}(\pi) = (v_0 = v) \cdot \gamma_{\text{Att}}(v)(c(\alpha)) \cdot \left(\int_{I_0} (\delta(c(\alpha))(\tau)) \, d\tau \right) \cdot \text{Env}_{c(\alpha)}(\alpha) \cdot G_{v'}^{\text{Att}^S | \text{Def}^S | \text{Env}}(\pi^1),$$

The probability of defender choices D , where $\Pi = (v^0, D)\pi$

$$F_{v^0}^{\text{Att}^S | \text{Def}^S | \text{Env}}(\Pi) = \gamma_{\text{Def}}(D) \cdot G_v^{\text{Att}^S | \text{Def}^S | \text{Env}}(\pi)$$

Stochastic Semantics

Environment

let $\omega = (v^0, D)(v_1, d_1, \alpha_1)(v_2, d_2, \alpha_2) \dots (v_n, \dagger)v_n$ be a timed run over the timed ADT ψ .

We give a time-bound indicator function for timebound τ ;

$$\mathbf{1}_{\psi, \tau}(\omega) = \begin{cases} 1 & \text{if } \llbracket \psi \rrbracket v_n \text{ and } \sum_{i=1}^{n-1} d_i \leq \tau \\ 0 & \text{otherwise} \end{cases}.$$

And can then define the probability measure of success as

$$\mathbb{P}^{\text{Att}^S}(\psi, \tau) = \int_{\omega \in \Omega^\tau(\psi)} \mathbf{1}_{\psi, \tau}(\omega) dF^{\text{Att}^S | \text{Def}^S}$$

Stochastic Semantics

Stochastic Question

Given an AD-tree, a stochastic attacker, a stochastic defender and time bound τ ; what is the probability of a successful attack.

Techniques

Use classical statistical methods, considering the outcome of each run as a Bernoulli experiment.

Off-the-shelf with UPPAAL SMC.

Costs

Action Cost

$$C_c : \mathbb{A}_a \rightarrow \mathcal{R}_{\geq 0}$$

Run Cost

$$C(\omega) = \sum_{i=1}^{n-1} C_c(\alpha_i) \cdot d_i$$

Estimated Cost

$$\mathbb{E}^{\text{Att}^S | \text{Def}^S | \text{Env}}(\psi, \tau) = \int_{\omega \in \Omega^\tau(\psi)} C^\tau(\omega) dF^{\text{Att}^S | \text{Def}^S | \text{Env}}$$

Cost

Estimation Question

Given an AD-tree ψ , a stochastic attacker Att^S , a stochastic defender Def^S and a time bound τ , what is the expected cost of an attack? i.e. calculate $\mathbb{E}^{\text{Att}^S | \text{Def}^S}(\psi, \tau)$.

Bounded

Can the attack be done within a cost-budget of B ?

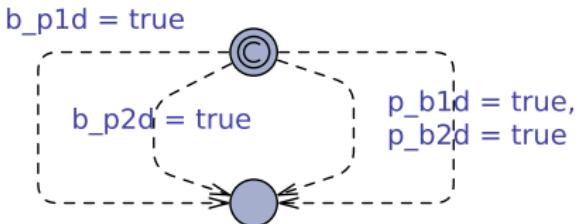
Techniques

Use classical statistical methods, measure expected value.
Off-the-shelf with UPPAAL SMC.

Encoding

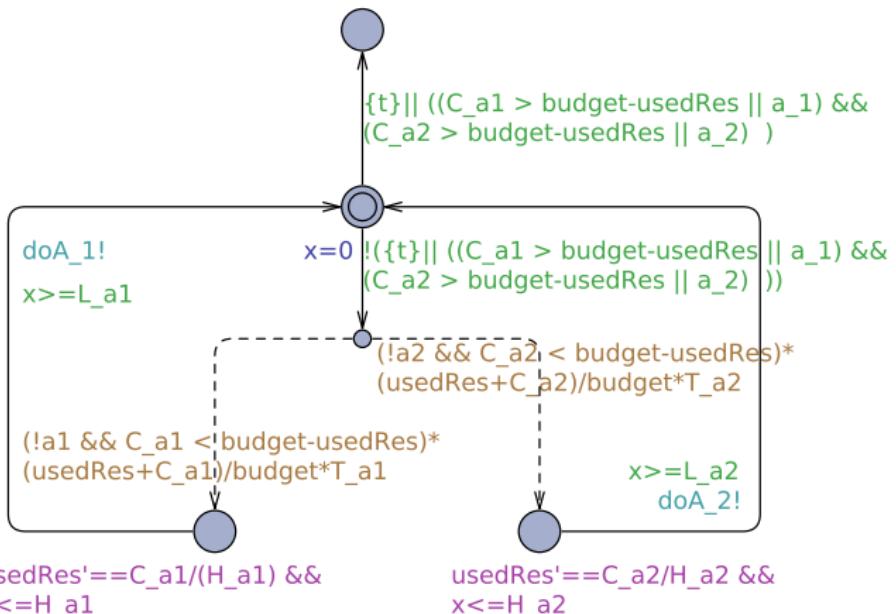
- ▶ a boolean flag for each action,
- ▶ a defender component,
- ▶ an attacker component,
- ▶ an environment component for each (attacker) action.

Composition

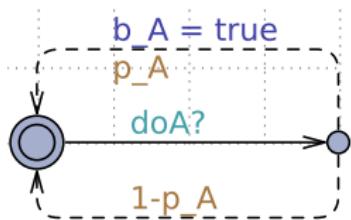

Parallel composition is well defined for Stochastic Timed Automata.

Assumption

Attacker is cost-preserving.


Encoding Defender

The Defender Automaton for $D = \{p1d, p2d\}$ with $A_d = \{p1d, p2d, p3d\}$


Encoding

Attacker

The Attacker Automaton for $A_a = \{a1, a2\}$ - - we assume a cost-preserving attacker.

Encoding Environment

The Environment Automaton for a generic action A

Parameterized Attacker

Profiles

Cost, probability and duration of attacker may be influenced by

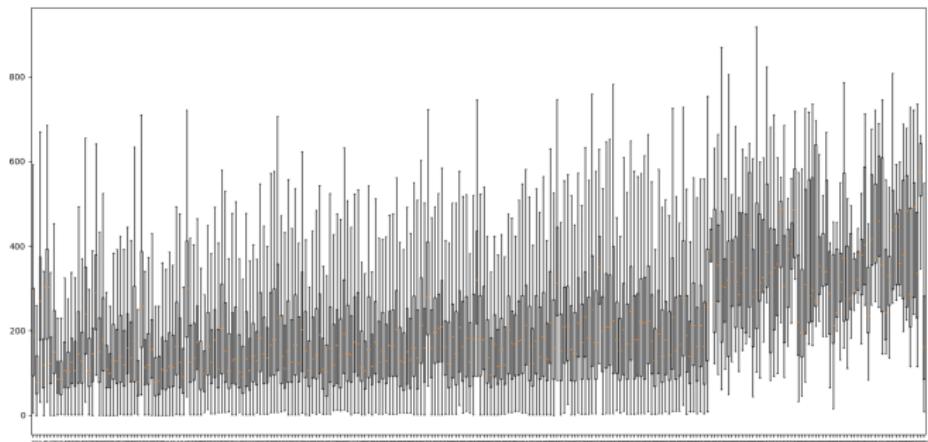
- ▶ Geographical location,
- ▶ Resources,
- ▶ Time Constraint,
- ▶ Technology,
- ▶ ...

We want to model, capture and analyze this!

Parameterized Attacker

ANOVA

ANalysis Of VAriance (ANOVA)


- ▶ Test if one or more parameters significantly influence continuous observation
- ▶ Based on finite set of experiments,
- ▶ can in combination with Tukeys Test compute optimal parameter sets.

Parameters

- ▶ Probabilities,
- ▶ Cost,
- ▶ Duration,
- ▶ ...

Experiment

Conclusion

- ▶ Used off-the-shelf tools and methods,
- ▶ Demonstrated parametric-analysis and optimization.

Further Work

- ▶ Temporal action-dependencies,
- ▶ Interactive defender.