Graphical Modeling of Security Arguments

Current State and Future Directions

Dan Ionita, Margaret Ford, Alexandr Vasenev, and Roel Wieringa

Problem context

- Socio-technical systems:
 - Large
 - Complex
 - Multi-layered
- Socio-technical risk assessment:
 - Often qualitative, informal
 - 100% security is un-achievable
 - Involves opportunity costs
 - Has to be frequently revisited
 - Is a collaborative process
 - Formal proofs are impossible

Why argumentation modelling?

- Traceability
- Defensibility
- Understandability
- Reusability

- 1. Review **argumentation** theory
- 2. Review **security argumentation** frameworks
- 3. Review graphical security argumentation tools
- 4. Compare graphical models of security arguments
- Draw conclusions w.r.t. usability, utility, scalability of the representations

- Legal, e.g. Toulmin
- Design rationale, e.g. QOC
- Decision support, e.g. CAE and GSN

Argumentation in security

- Arguing satisfaction of security requirements
- Supporting the elicitation of security requirements
- Argumentation-based risk assessment

Graphical security argumentation tools

- OpenArgue / OpenRISA
 - Graph-based, semi-formal
- Argumentation spreadsheets
 - Table-based, semi-formal
- ArgueSecure
 - Tree-based, informal

OpenArgue / OpenRISA

Figure from:

Yu, Yijun, et al. "OpenArgue: Supporting argumentation to evolve secure software systems." *Requirements Engineering Conference (RE)*, 2011 19th IEEE International. IEEE, 2011.

OpenArgue / OpenRISA

Argumentation spreadsheets

ARGUMENTS								TAGS				
ĵ.	Claim		Assumptions		Facts	Re-	Asset(s)	Status	Notes			Assets
#	txt	#	txt	#	txt	buts	ID(s)	IN/OUT	Transf./ Red.	II	D	NAME
CO	System adminstrator can be social engineered to give access to customer data	A0	System administrator is vulnerable to social engineering	FO	System administrator has access to customer data			IN		т	1	policy
C1	A disgruntled system administratot might leak customer data	Α1	Employee satisfaction is low	F1	System administrator has access to customer data			оит		T	2 1	web-frontend
C2	Maintain high employee satisfaction	A2	-	F2	-	A1		IN				
C3	It is not always possible to maintain high employee satisfaction	А3	-	F3	-	C2		OUT				
C4	Delegate liability	Α4	Employees can be made legally responsible for their actions via policy	F4	-	C3	т!,	IN	Transf.			
	Customer data can be leaked via an SQL injection attack	Α5	web-frontend has SQL injection vulnerability	F5	-		Т2,	OUT				Rectangular Snip
C6	Perform regular pen-testing of the web-frontend	Α6	-	F6	-	A5	T2,	IN	Red.			
C7	Cross-site scripting attack can be used to extract log-in credentials	Α8	An XSS vulnerablity exists on the web-frontend	F8	-		Т2,	OUT				
C8	Perform regular pen-testing of the web-frontend	A9	-	F9	-	A8	Т2,	IN	Red.			

ArgueSecure-offline

Argumentation-based Risk Assessment RR1: Risk of loosing customer data Social engineering Attacker can social engineer system administrator to obtain access to customer data RR2: Risk of loosing customer data (2) Malicious insider A A disgruntled system administrator might leak customer data Maintain high employee satisfaction It is not always possible to maintain high employee satisfaction for all employees Delegate liability A Employees can be made legally responsible for their actions RR3: Risk of loosing customer data (3) SQL injection attack ${\rm Attacker}\ {\rm can}\ {\rm exploit}\ {\rm SQL}\ {\rm injection}\ {\rm vulnerabilities}\ {\rm of}\ {\rm the}\ {\rm web-frontend}\ {\rm in}\ {\rm order}\ {\rm to}\ {\rm obtain}\ {\rm customer}\ {\rm data}$ Perform regular pen testing of the web-frontend R R4: Risk of loosing customer data (4) ${\rm A}$ XSS vulnerability of the web-frontend could be used to extract log-in credentials Perform regular pen-testing of the web-frontend

ArgueSecure-online

Comparison

	Open	Arg.	AS-	AS-
	Argue	Sheets	offline	online
Intra-argument granularity	3	3	2	2
Inter-argument granularity	4	2	1	l
Relate to security requirements	Y	N	N	N
Relate to assets	N	Y	N	Y
>1 attack vector per risk	Y	N	N	Y
>1 mitigatation per attack	Y	N	N	Y
Supports risk transfer	N	Y	Y	Y
Collaborative	N	N	N	Y
Planned vs. implemented	N	N	Y	N
Search and filters	N	N	N	Y
Export and reports	N	N	Y	Y

- Graphs are a suitable representation for security arguments
- Security arguments consist of at least: a risk, one or more vulnerabilities, and one or more mitigations
- Relationships other than rebuttals are a threat to scalability and usability.
- Features to help navigate the argumentation graph are critical to making it human-writable and humanreadable

- Security arguments help mitigate uncertainty
 - Important for certification, compliance, awareness, assurance
- Graphical modelling of security arguments is still an academic pursuit
- To be usable in practice, graphical argumentation models need to be
 - conceptually simpler,
 - functionally more intuitive,
 - a lot more scalable;
 - at lest partially automated;
- Trees are a good start!