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Graphical Model
• Classical	definition:
– Probabilistic	model	where	a	graph	expresses	the	
conditional	dependence	between	random	
variables

– e.g.,	Bayesian	Network,	Markov	Network	

• In	this	talk:
– A	graph	where	probabilistic	reasoning	is	carried	
out	to	solve	certain	security	analysis	problems
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A Bottom-up Approach
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Network 
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5

A	day	in	the	life	of	a	real	Security	Analyst	(SA)



High-confidence Conclusions with Evidence
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Simulated Mental Model –
Observation Correspondence (OC)
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anomalyHighTraffic attackerNetActivity

netflowBlackListFilter(H,	BlackListedIP)

memoryDumpMaliciousCode(H)

memoryDumpIRCConnection(H1,H2)

p

compromised(H)
l

compromised(H)
l

exchangeCtlMessage(H1,H2)
l

Observations Hypothesesmode

“what you can see” “what you want to 
know”

mode     p: possible   l: likely    c: certain



Simulated Mental Model –
Internal Model (IM)
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Hypothesis	1 Hypothesis	2
“infers”

mode

compromised(H1) probeOtherMachine(H1,H2)

sendExploit(H1,H2) compromised(H2)

sendExploit(H1,H2)compromised(H2)

compromised(H1)probeOtherMachine(H1,H2)

p

l

p

c

exchangeCtlMessage(H1,H2) compromised(H1)c

mode     p: possible   l: likely    c: certain



Simulate Human Reasoning
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compromised(172.16.9.20)	 l

memoryDumpIRCConnection(H1,H2) exchangeCtlMessage(H1,H2)
l

exchangeCtlMessage(H1,H2) compromised(H1)
c

exchangeCtlMsg(172.16.9.20,	172.16.9.1)	

memoryDumpIRCConnection(172.16.9.20,	172.16.9.1))

l



Theory for Reasoning
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• Logical	Model
– Reasoning	model	(OC	and	IM)	can	be	expressed	in	
Datalog.

– Evaluate	the	Datalog program	on	input	observations.
– Carried	out	in	the	deductive	database	XSB.
– Exhaustively	find	all proofs	of	a	true	query,	leading	to	
a	proof	graph.

• Complexity	is	O(N2)
– N	is	the	number	of	different	IP	addresses	appearing	in	
the	input.



obs(memoryDumpIRCConnection(172.16.9.20,	 172.16.9.1))
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exchangeCtlMsg(172.16.9.20,	172.16.9.1)

netflowBlackListFilter(172.16.9.20,	botnetIP))

compromised(172.16.9.20)

l

l Corroborating	
evidential	paths

The Graphical Model

l

strengthen( l, l ) = c

Can	we	formulate	a	mathematical	 theory	to	explain	the	
strengthening	process	that	happens	in	an	analyst’s	mind?



obs(memoryDumpIRCConnection(172.16.9.20,	 172.16.9.1))
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exchangeCtlMsg(172.16.9.20,	172.16.9.1)

netflowBlackListFilter(172.16.9.20,	botnetIP))

compromised(172.16.9.20)

0.6

0.6 Corraborating
evidential	paths

0.6

combine( 0.6, 0.6 ) = 0.84

The Graphical Model
Can	we	formulate	a	mathematical	 theory	to	explain	the	
strengthening	process	that	happens	in	an	analyst’s	mind?



Our Choice of Theory

• Need	to	find	a	theory	that	is	aligned	well	with	
the	human	analyst’s	mental	model	

• Dempster-Shafer	(DS)	theory
– The	notion	of	“belief”	corresponds	naturally	to	
what	an	analyst	wants	to	capture

– Allowing	quantitative	weights	assigned	to	sets	of	
hypotheses,	e.g.	{attack,	no_attack}

– Combining	independent	evidence	from	multiple	
sources
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Qulitative => Quantitative
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alert1

probe(ip1,	 ip2)

Sensor	quality Uncertainty	Modes Belief	value
Low Possible p 0.1

Moderate Likely l 0.6
High Certain c 1

p	(0.1)

sensor

Zomlot,	et	al. AISec 2011
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{true}	:		0.1
probe(ip1,	 ip2)

DS	
Translation

sensor

Basic	Probability	Assignment	 (bpa)

p	(0.1) {trustworthy}	:		0.1
{untrustworthy}:		0.9

{true,	false}

Frames	of	Discernment	 (FoD)

{trustworthy,	
untrustworthy}

Compatibility	
Relationship

Zomlot,	et	al. AISec 2011

DS Reasoning Set up

alert1

{true,	false}:		0.9



DS Combination
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probe(ip2,	 ip3) probe(ip2,	 ip4)sendExploit(ip1,	 ip2)

compromised(ip2)

sensor1 sensor2 sensor3 sensor4α β γ δγ

translate(α)=α’	 combine(β,γ)=ε combine(γ,δ)=η

α’

ε η

custom_combine(α’,ε,η)=λ

Non-independent	
evidence	sources

Customized	combination	method	
for	dependent	evidence

Zomlot,	et	al. AISec 2011

alert1 alert2 alert3 alert4 alert5



Prototype: SnIPS
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Reasoning	
Engine

(convert	to tuples)

Observation	
Correspondence

User	query,	e.g.
which	machines	

are compromised?

Answers	with	ranked	
proof	graphs	based	
on	DST	belief	value

pre-processing

Internal	ModelSnort Signature	
Repository

Done	only	once

Snort	
Alerts

Ou,	et	al. ACSAC	2009



How do we know it works?
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Evaluation

• Can	the	ranking	provided	by	the	customized	
DS	belief	calculation	help	in	prioritizing	IDS	
alerts?

• Is	it	really	the	customized	DS	that	helps?
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Experimentation Strategy

• We	need	data	with	ground	truth
– Short-term	approach:	evaluate	on	publicly	
available	datasets:	LL	DARPA	dataset	(1999)
• There	are	many	limitations.

– e.g.,	DAPAR	dataset	has	been	harshly	criticized	in	the	
literature.

• Just	used	this	as	a	baseline	test.
– Needs	to	avoid	the	pitfalls	in	those	datasets

• Long-term	approach:	use	production	system,	
with	assistance	from	security	analysts
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Prioritization Effect
(LL DARPA dataset)
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Percentage

Zomlot,	et	al. AISec 2011



ROC Curve
(LL DARPA dataset)
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Zomlot,	et	al. AISec 2011



In Summary
• A	bottom-up	approach	to	designing	graphical	
models	for	security	analysis

• Empirically	designed	models	fit	the	needs	of	
security	analysts	better	than	“classical	
models”

• Leveraging	the	core	concepts	of	existing	
probabilistic	reasoning	models,	with	
customization	built	on	tested	foundations
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