Survivability Analysis of a Computer System under an Advanced Persistent Threat Attack

Ricardo J. Rodríguez[†], Xiaolin Chang[‡], Xiaodan Li[§], Kishor S. Trivedi[§] rjrodriguez@unizar.es, xlchang@bjtu.edu.cn, {xiaodan.li,ktrivedi}@duke.edu

All wrongs reversed

†University of Zaragoza †Second University of Naples

[‡]Beijing Jiaotong University

June 27, 2016

3rd International Workshop on Graphical Models for Security Lisbon, Portugal

Introduction (I)

- Cyberattacks are rapidly increasing
 - +38% in 2015^a
 - Cybercrime is a growing (and quite wealthy) industry
- High cost for companies (estimated cost of \$575B)
 - Service downtime and cleanup of compromised systems
 - Loss of customer confidence, even data theft

```
ahttps://news.sap.com/
pwc-study-biggest-increase-in-cyberattacks-in-over-10-years/
```


Introduction (I)

- Cyberattacks are rapidly increasing
 - +38% in 2015^a
 - Cybercrime is a growing (and quite wealthy) industry
- High cost for companies (estimated cost of \$575B)
 - Service downtime and cleanup of compromised systems
 - Loss of customer confidence, even data theft

```
ahttps://news.sap.com/
pwc-study-biggest-increase-in-cyberattacks-in-over-10-years/
```

Just a little bit scared...

- Critical infrastructures: provide essential services to the society
 - Examples: power distribution, water treatment, financial services...
 - Discontinuity of service may lead to fatalities or injuries
 - Different nature, from unintended acts of nature to intentional attacks (e.g., sabotage, terrorism)
 - Cyberattacks to these systems have an increasing trend

Introduction (II)

Malware

- Specially crafted software with one goal: achieve malicious activities
- Different types of malware, depending on their behaviour
 - Viruses, worms, keyloggers, ransomware, etc.

Introduction (II)

Malware

- Specially crafted software with one goal: achieve malicious activities
- Different types of malware, depending on their behaviour
 - Viruses, worms, keyloggers, ransomware, etc.

Advanced Persistent Threat (APT)

- Advanced: sophisticated attack
 - Involves a previous reconnaissance of the target
- Persistent: long-term staying
 - The longer they stay in the system, the more data are exfiltrated

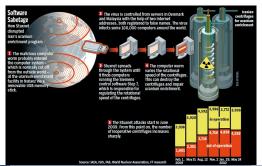
Introduction (II)

Malware

- Specially crafted software with one goal: achieve malicious activities
- Different types of malware, depending on their behaviour
 - Viruses, worms, keyloggers, ransomware, etc.

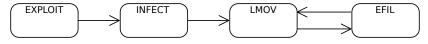
Advanced Persistent Threat (APT)

- Advanced: sophisticated attack
 - Involves a previous reconnaissance of the target
- Persistent: long-term staying
 - The longer they stay in the system, the more data are exfiltrated

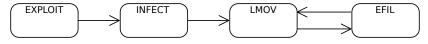

Knowledge is power

Introduction (III)

APT examples


- Operation Aurora: attributed to China, in 2010 a lot of companies from different domains (such as Google, Yahoo, Morgan Stanley, or Dow Chemicals) were attacked
- Stuxnet: attributed to US-Israel and discovered in 2010, affected to Siemens PLCs of SCADA networks in Iran nuclear facilities
- Others: GhostNet, Duqu, Flame, ...

Introduction (IV)


APT life-cycle

- Entry point/exploitation: 0-days or known but not fixed vulnerabilities
- Infection: make persistence. Normally, also installs RAT tools
- Lateral movement: move through the network, looking data of interest and other hosts to compromise
- Exfiltration: modify or send out network boundaries sensitive data

Introduction (IV)

APT life-cycle

- Entry point/exploitation: 0-days or known but not fixed vulnerabilities
- Infection: make persistence. Normally, also installs RAT tools
- Lateral movement: move through the network, looking data of interest and other hosts to compromise
- Exfiltration: modify or send out network boundaries sensitive data

Survivability

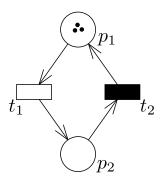
- System's ability to withstand malicious attacks and support the system's mission even when parts of the system are damaged
- Assessing the impact of an APT allows to characterize a system against those intended failures and evaluate mitigation techniques

Introduction (V)

Contribution

- Survivability assessment of a computer system under an APT attack
- Security model (as a Stochastic Reward Net)
 - Integrates defender + attacker actions
- Assumptions made: event times are exponentially distributed
- Four survivability metrics
 - System recovery
 - System availability
 - Data confidentiality loss
 - Data integrity loss
- ... after a vulnerability is announced, and during vulnerability mitigation strategy is being deployed

Related Work

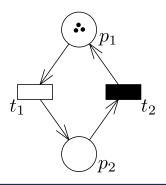

Survivability metrics

- Little research on quantitative evaluation metrics
 - Survivability of a resilient database system against intrusions, modeled with CTMC. Later, extended to semi-Markov processes (Wang et al., 2006, 2010)
 - General approach for survivability quantification of networked systems using SRNs (Trivedi and Xia, 2015)
 - Survivability assessment of Saudi Arabia crude-oil pipeline network (Rodríguez et al., 2015)

Our model allows us...

- Not only availability analysis, also confidentiality and integrity (loss)
- Investigate security attributes during the transient period that:
 - Starts after a vulnerability is publicly announced
 - Ends when the vulnerability is fully removed
- Quantitative assessment of these attributes
- Insights on cost/benefit trade-offs of investments

Background

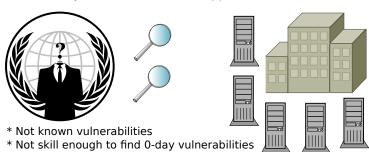


Petri nets – explanation simplified

- Underlying Markov-chain
- Places (circles, p_X)
- Transitions (bars, t_X)
- Time interpretation
- Tokens (black dots)

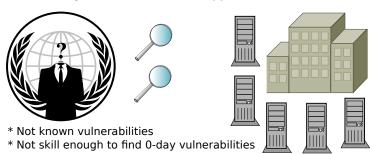
Background

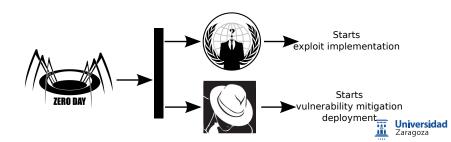
Petri nets – explanation simplified

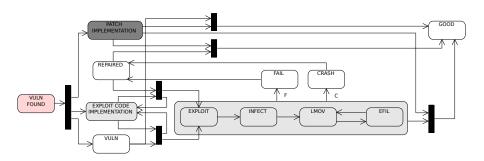

- Underlying Markov-chain
- Places (circles, p_X)
- Transitions (bars, t_X)
- Time interpretation
- Tokens (black dots)

Extensions

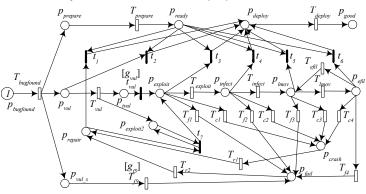
- Stochastic PNs: exponentially distributed firing time in transitions
- Generalized SPNs: immediate + timed transitions (any distribution)
 - Also inhibitor arcs
- Stochastic Reward Nets: GSPN + reward functions at net level


GraMSec 2016


System Description and Model (I)



System Description and Model (I)


System Description and Model (II)

Survivability metrics defined

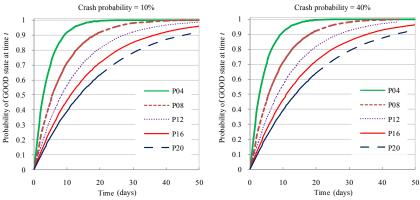
- m_1 Probability that the vulnerable system has been patched at time t
- m_2 Probability that the system is unavailable at time t
- m_3 Mean accumulated time that the system is unavailable in (0, t]
- m_4 Mean accumulated loss of system confidentiality and integrity in (0, t]

System Description and Model (III)


```
g_{vuln} if (\#(p_{vuln_s}) == 1) then 1 else 0

g_{f_5} if (\#(p_{vuln}) == 1) then 1 else 0
```

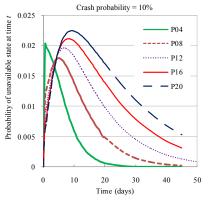
- m_1 Expected number of tokens of p_{good} at time t
- m_2 Expected number of tokens of $(p_{crash} + p_{fail} + p_{deploy})$ at time t
- m_3 Expected accumulated reward of $(p_{crash} + p_{fail} + p_{deploy})$ by time t
- m_4 Expected accumulated reward of p_{exfil} by time t

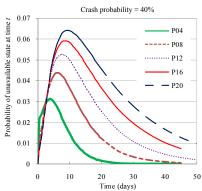

Experiments and Discussion (I)

Symbol	Definition	Mean value
$1/\delta$	Mean time that the discovered vulnerability is known to all	30 min
$1/\lambda_{prepare}$	Mean time for implementing a mitigation strategy	20 days
$1/\lambda_{deploy}$	Mean time for installing the mitigation strategy	12 days
$1/\lambda_{vuln}$	Mean time for generating the exploit code	4 days
$1/\lambda_{fail}$	Mean time that the computer system fails	365 days
$1/\lambda_{fix}$	Mean time that the computer system completes the failure	2 days
	or crash fixing	
$1/\lambda_{efil}$	Mean time that the attacker obtains the desired information	2 days
$1/\lambda_{exploit}$	Mean time for injecting the exploit code into the system	7 days
$1/\lambda_{inf}$	Mean time that the exploit code is persistent	1 days
$1/\lambda_{lmov}$	Mean time that the attacker finds sensitive data of interest	7 days
ρ_1	Probability that the exploit code works in the system	0.6
ρ_2	Probability that the exploit code is persistent	0.6
ρ_3	Probability that the attacker finds its target	0.6
ρ_4	Probability that the attacker obtains the desired information	0.6

- SPNP software
- P04, P08, P12, P16, and P20 represent the results of $1/\lambda_{prepare} = \{4, 8, 12, 16, 20\}$ days, respectively
- Crash probability of 10% and 40%

Experiments and Discussion (II)

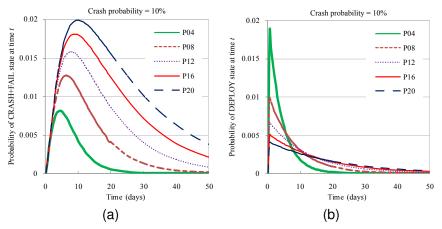

Probability of GOOD state at time t under different crash probabilities (metric m_1)



- Crash probability has little effect
 - Deployment starts when mitigation strategy is ready (regardless the system state is)
- The smaller $1/\lambda_{prepare}$, the larger increase in m_1

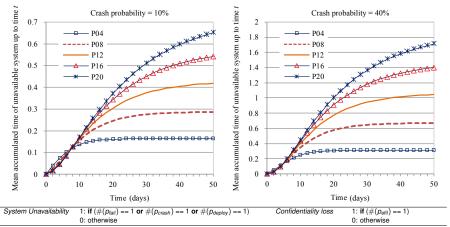
Experiments and Discussion (III)

Probability of unavailable system at time t under different crash probabilities (metric m_2)



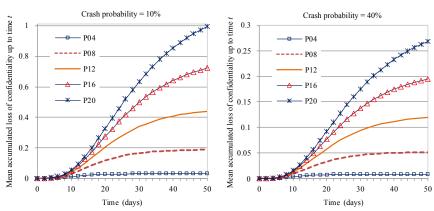
- Both crash probability and $\lambda_{prepare}$ affect unavailability
 - When exploit code is ready, system crashes frequently
 - Once mitigation strategy is ready, it starts deployment
- The larger $1/\lambda_{prepare}$, the larger increase in m_2 (not hold at beginning!)

Experiments and Discussion (IV)


Probability of (a) CRASH+FAIL and (b) DEPLOY state at time t under crash probability of 10%

- At the beginning, the smaller $1/\lambda_{prepare}$, the larger increase in m_2
 - Mainly caused by the probability of DEPLOY state

Experiments and Discussion (V)


Mean accumulated time that the system is unavailable under different crash probabilities (metric m_3)

- Same reasoning as for m₂
 - The larger $1/\lambda_{prepare}$, the larger increase in m_3 (not at the beginning)

Experiments and Discussion (VI)

Mean accumulated of system confidentiality and integrity loss by time t under different crash probabilities (metric m_4)

• The larger $1/\lambda_{prepare}$ and/or the smaller crash probability, the larger mean accumulated loss

Conclusions and Future Work

Conclusions

- Critical infrastructures mainly targeted by Advanced Persistent Threats: make persistent and send sensitive data out
 - Interest to survive these attacks, minimizing the impact
- CTMC model-based survivability analysis of a computer system under an APT
- Four metrics proposed to analyze system recovery, system availability, data confidentiality loss, and data integrity loss
 - Numerical results help to choose the best strategies
 - Insights on the cost/benefit trade-offs of investment efforts in system recovery strategies, as well as vulnerability mitigation schemes

Conclusions and Future Work

Conclusions

- Critical infrastructures mainly targeted by Advanced Persistent Threats: make persistent and send sensitive data out
 - Interest to survive these attacks, minimizing the impact
- CTMC model-based survivability analysis of a computer system under an APT
- Four metrics proposed to analyze system recovery, system availability, data confidentiality loss, and data integrity loss
 - Numerical results help to choose the best strategies
 - Insights on the cost/benefit trade-offs of investment efforts in system recovery strategies, as well as vulnerability mitigation schemes

Future work

- Extend the model to consider security improvements
- Multiple vulnerabilities; some event times no exponentially distributed
- Better modelling of restoration process

Survivability Analysis of a Computer System under an Advanced Persistent Threat Attack

Ricardo J. Rodríguez[†], Xiaolin Chang[‡], Xiaodan Li[§], Kishor S. Trivedi[§] rjrodriguez@unizar.es, xlchang@bjtu.edu.cn, {xiaodan.li,ktrivedi}@duke.edu

All wrongs reversed

†University of Zaragoza †Second University of Naples

[‡]Beijing Jiaotong University

June 27, 2016

3rd International Workshop on Graphical Models for Security Lisbon, Portugal