Quantitative Attack Tree Analysis: Stochastic Bounds and Numerical Analysis

Nihal Pekergin, LACL, Université Paris Est-Créteil

with collaboration Sovanna Tan (LACL, UPEC) Jean-Michel Fourneau (DAVID, UVSQ)

Motivation

- Efficient numerical analysis of temporal properties of Attack Trees
- ▶ Inputs: discrete probability distributions (times to success of Basic Attacks) typically obtained from measurements
- Algorithms on discrete distributions
- ▶ Output: distribution of the time that the attack of the whole system would be successful
- ▶ Problem: the size of the distributions may increase after each operation which may be high time consuming
- Answer: using the strong stochastic ordering \leq_{st} to obtain a bound of the results with a smaller size

Attack Trees (AT)

- non state-space models to illustrate graphically attack scenarios
- ➤ similar to fault trees in reliability (safety)

 cross-fertilization between safety and security engineering have been stated by many authors in the literature
- ▶ leaves : Basic Attacks (BA)
- ▶ internal nodes : logical operators

AND: both inputs must be TRUE

OR: at least one input must be TRUE

▶ static ATs are extended to dynamical ATs

Dynamical Attack Trees

- ▶ input distributions : associated to the leaves represent the time that input becomes TRUE success time of the underlying BA
- ightharpoonup gates: AND, OR, SEQ (sequential dependencies)
- output distribution of a gate: attack (compromising) time for the subsystem having the gate as root
- output distribution at the root of the AT : attack time for the whole system
 the temporal success probabilities of the attack scenario
 - the temporal success probabilities of the attack scenario defined by the AT

Attack Tree Steal Exam

Logical gates

- ► input distributions are any discrete distribution efficient algorithms
- ▶ input distributions are mutually independent
- $ightharpoonup X_i$ discrete random variable of size l_i , i=1,2
- ▶ $AND(X_1, X_2) = max(X_1, X_2)$ $Pr(O = a) = Pr(X_1 = a) \times Pr(X_2 < a) + Pr(X_2 = a) \times Pr(X_1 < a) + Pr(X_1 = a) \times Pr(X_2 = a)$
- ▶ $OR(X_1, X_2) = min(X_1, X_2)$ $Pr(O = a) = Pr(X_1 = a) \times Pr(X_2 > a) + Pr(X_2 = a) \times Pr(X_1 > a) + Pr(X_1 = a) \times Pr(X_2 = a)$
- $SEQ(X_1, X_2) = X_1 + X_2 \ (convolution)$ $Pr(O = a) = \sum_k Pr(X_1 = k) \times Pr(X_2 = a k)$

Complexities

- \blacktriangleright AND and OR gates:
 - Max size: $l_1 + l_2 1$.
 - ▶ Algorithm : If sorted $\Theta(l)$, $l = max(l_1, l_2)$ $\Theta(l \times \log l)$
- \triangleright SEQ gate
 - Max size: $l_1 \times l_2 1$.
 - Naive approach $\Theta(l_1 \times l_2)$ Discrete Fast Fourier $\Theta(l \times \log l)$

Due to the successive application of these operations, distribution sizes increase so the time complexity

Bounding distributions

 \leq_{st} order between random variables:

$$X \leq_{st} Y \quad \Leftrightarrow \quad \mathrm{E}[f(X)] \leq \mathrm{E}[f(Y)]$$

for all increasing function f, when the expectations E exist

first-order stochastic dominance in the economics literature

- ▶ If $X \leq_{st} Y$, then $E[X] \leq E[Y]$
- $\Pr(X \le a) \ge \Pr(Y \le a) \ \forall a$
- $\Pr(X > a) \le \Pr(Y > a) \ \forall a$

Example:

Let X be the time at which a basic attack (a leaf in the AT) would be successful.

$ \mathcal{V}_X 2$	5	8.5	10	15
$\mathcal{P}_X 0.25$	0.2	0.3	0.15	0.1

Let U be the upper bound

$\mathcal{V}_U 4$	10	15
$\mathcal{P}_U 0.25$	0.65	0.1

X and U cumulative distributions

Attack success probabilities

The probability that the attack associated with the random variable X would be successful at time t:

$$\sum_{\{i|\mathcal{V}_X[i]\leq t\}} \mathcal{P}_X[i]$$

If $X \leq_{st} U$, then $\forall t$, the success probability before or at time t for the attack associated with X is greater than that of U.

Monotonicity of gates

AND, OR, SEQ are monotone:

 $increase\ of\ inputs
ightarrow increase\ of\ output$

$ \mathcal{V}_Y 5$	7	9	13	20
$\mathcal{P}_Y 0.3$	0.1	0.25	0.15	0.2

$ \mathcal{V}_L 2$	7	10
$\mathcal{P}_L 0.45$	0.45	0.1

 $Monotonicity\ of\ AND\ gate:$

$$AND(L,Y) \leq_{st} AND(X,Y) \leq_{st} AND(U,Y)$$

Monotonicity of AND gate

Sizes:
$$AND(U,Y) = 7$$
, $AND(L,Y) = 6$ $AND(X,Y) = 8$

Success probabilities for t = 7:

$$AND(U,Y) = 0.1, AND(X,Y) = 0.18, AND(L,Y) = 0.36$$

Algorithm

Require: AT: A

input distributions for the leaves: \mathcal{D} max number of bins of a distribution : $n \in \mathbb{N}$

Ensure: Output distribution at the root of A.

- 1: Label the gates using the topological order from bottom-up.
- 2: for all gates g in the ascending order of the labels do
- 3: Evaluate the output distribution of gate g
- 4: If the size of the output distribution is larger than n, reduce its size to n.
- 5: end for

Bounding Algorithms

- ► Trade-off between the accuracy of results and the complexity
- optimal bounding distributions with respect to an increasing positive reward high complexity: $\Theta(N^2n)$,

N: the size of the original distribution and

n : the size of the bounding distribution

- greedy algorithm with complexity $\Theta(N \log N)$
- ▶ naive approach $\Theta(N)$.

Usefulness of the bounding approach

- \blacktriangleright Reduced-size bounding distributions \rightarrow decrease the algorithmic complexity
- ▶ Difficulty to estimate temporal behaviors of basic attacks. Bounds in the context of the uncertainty are useful
- ► Checking constraints:
 - output distributions: $d_L \leq_{st} d \leq_{st} d_U$
 - success probabilities for a fixed $t: p_U \leq p \leq p_L$
 - if $p_L < threshold$, then the constraint is satisfied
 - ▶ if $p_U \ge threshold$, then the constraint is not satisfied
 - otherwise, the bounds must be refined (the number of bins must be increased)

Output distribution for Steal Exam

t = 12

- ▶ 50 bins : $0.57 \le p \le 0.76$
- ▶ 200 bins: $0.606 \le p \le 0.677$

Conclusions

- ▶ The quantitative analysis of attack trees are very useful to highlight the impact of the potential countermeasures that can be taken to reinforce the security of the system
- ▶ Due to the stochastic monotonicity properties of the *AND*, *OR*, *SEQ* gates, the upper and lower discrete, reduced-size, bounding distributions can be efficiently derived
- ▶ Bounds are relevant when the quantitative evaluation is done to check security constraints
- ▶ Trade-off between the accuracy and the time complexity