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Introduction

Context : Risk analysis
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Introduction

The attack tree construction

Top-down manual construction

Manual construction is tedious and error-prone:

non relevant subgoals, forgotten cases, etc.

Automated validation
How do we guarantee that this construction is sound?
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Background definitions

System representation
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a domain-specific, high-
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a labeled transition system S

Compilation phase
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Background definitions

Attack trees

Introduced by Bruce Schneier in 1999.
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3 types of internal nodes:
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3 notions of soundness

Attack goals

Given by a pair of initial conditions and final conditions:

ι� γ

with path semantics [ι� γ]S:

[i � f ]S = paths from i to f
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3 notions of soundness

Path semantics for >

ι � γ,>

ι1 � γ1 ι2 � γ2 . . . ιn � γn

[(ι1 �γ1)> (ι2 �γ2)> . . . (ιn �γn)]S = [ι1 �γ1]S ∪ [ι2 �γ2]S ∪ . . . [ιn �γn]S

[(i � m1)>(i � m2)]S
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3 notions of soundness

Path semantics for =

ι � γ,=

ι1 � γ1 ι2 � γ2 . . . ιn � γn

[(ι1 � γ1)= (ι2 � γ2)= . . . (ιn � γn)]S = [ι1 � γ1]S.[ι2 � γ2]S. . . . [ιn � γn]S

[(i � m1)=(m1 � m2)]S
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3 notions of soundness

Path semantics for ?

ι � γ,?

ι1 � γ1 ι2 � γ2 . . . ιn � γn

[(m1 � f)?(i � m2)]S
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3 notions of soundness

Soundness

ι � γ,�

ι1 � γ1 ι2 � γ2 . . . ιn � γn

Compare two sets of paths:

[(ι1 � γ1)� . . .� (ιn � γn)]S versus [ι� γ]S

in 3 different manners{ Admissibility, Consistency, and Completeness
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3 notions of soundness

Soundness notions

ι � γ,�

ι1 � γ1 ι2 � γ2 . . . ιn � γn

Definition (Admissibility)

[(ι1 � γ1)� . . .� (ιn � γn)]S ∩ [ι� γ]S , ∅

Definition (Consistency)

[(ι1 � γ1)� . . .� (ιn � γn)]S ⊆ [ι� γ]S

Definition (Completeness)

[(ι1 � γ1)� . . .� (ιn � γn)]S = [ι� γ]S
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3 notions of soundness Admissibility

Admissibility

I imagine a way to attack

ι � γ,�

ι1 � γ1 ι2 � γ2 . . . ιn � γn

Definition (Admissibility)

[(ι1 � γ1)� . . .� (ιn � γn)]S ∩ [ι� γ]S , ∅
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3 notions of soundness Consistency

Consistency

I know how to do it!

ι � γ,�

ι1 � γ1 ι2 � γ2 . . . ιn � γn

Definition (Consistency)

[(ι1 � γ1)� . . .� (ιn � γn)]S ⊆ [ι� γ]S

M. Audinot, S. Pinchinat 16/22



3 notions of soundness Completeness

Completeness

That’s the only way to do it!

ι � γ,�

ι1 � γ1 ι2 � γ2 . . . ιn � γn

Definition (Completeness)

[(ι1 � γ1)� . . .� (ιn � γn)]S = [ι� γ]S
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Checking Admissibility

The decision problem ADM(�)

For � ∈ {>,=,?}

Definition (Admissibility)

[(ι1 � γ1)� . . .� (ιn � γn)]S ∩ [ι� γ]S , ∅

ADM(�)
Input:

ι � γ,�

ι1 � γ1 ι2 � γ2 . . . ιn � γn

A labeled transition system S

Output: yes if Admissibilty holds, no otherwise.
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Checking Admissibility

Admissibility: computational complexity

ADM(�)
Input:

ι � γ,�

ι1 � γ1 ι2 � γ2 . . . ιn � γn

labeled transition system S

Output: yes if Admissibilty holds, no otherwise.

Theorem
ADM(>) and ADM(=) are in P.

Theorem
ADM(?) is in Pspace.
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Conclusion

Conclusion & Future work

Conclusion
3 notions of soundness: Admissibility, Consistency, and
Completeness.

Deciding admissibility is in P for > and =, and in Pspace for ?.

Future work
Exact complexity of ADM(?).

Complexities for consistency and completeness.

Implementation of the notions in the tool ATSyRA
[Pinchinat et al. , 2015].

Extension to system models with quantitative aspects.
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Thank you for your attention.

Questions?
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