

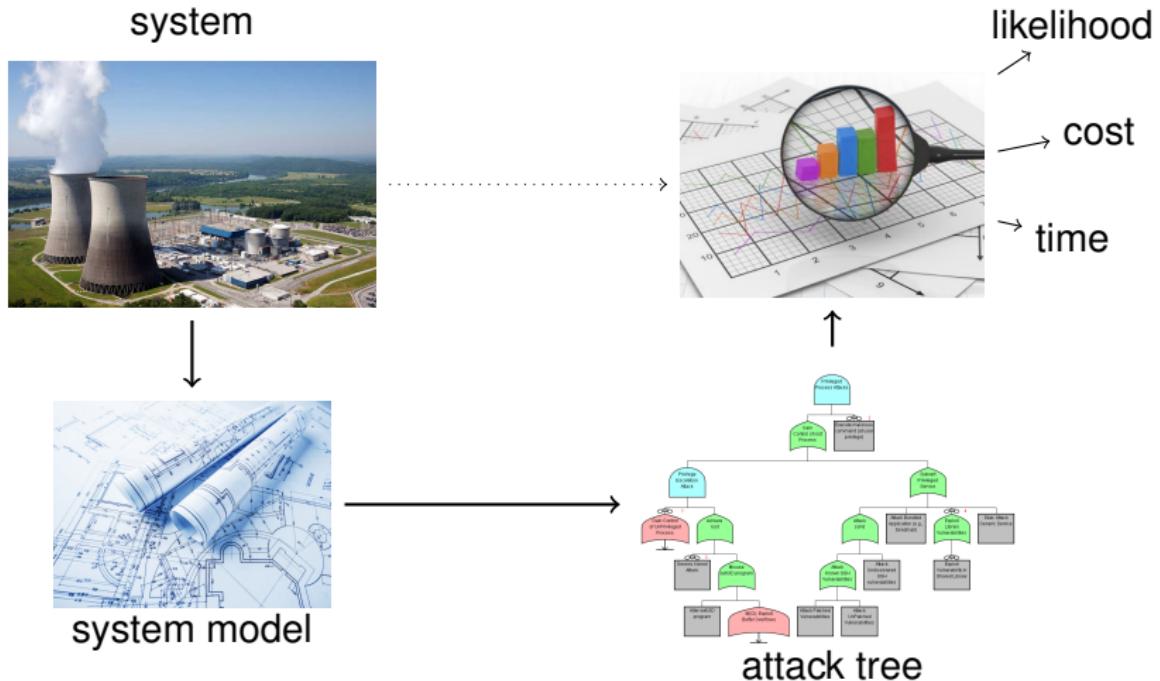
On the soundness of attack trees

Maxime Audinot Sophie Pinchinat

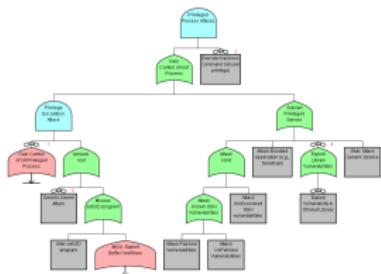
Université de Rennes 1

27 june 2016

Context : Risk analysis



The attack tree construction



Top-down manual construction

Manual construction is tedious and **error-prone**:

non relevant subgoals, forgotten cases, etc.

Automated validation

How do we guarantee that this construction is sound?

Plan

1 Background definitions

2 3 notions of soundness

- Admissibility
- Consistency
- Completeness

3 Checking Admissibility

Plan

1 Background definitions

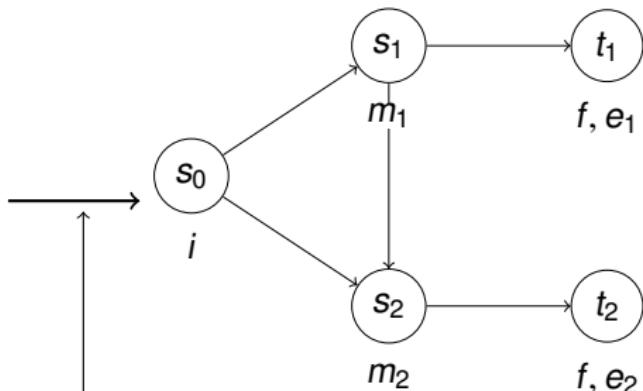
2 3 notions of soundness

- Admissibility
- Consistency
- Completeness

3 Checking Admissibility

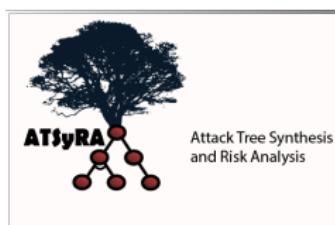
System representation

a domain-specific, high-level specification



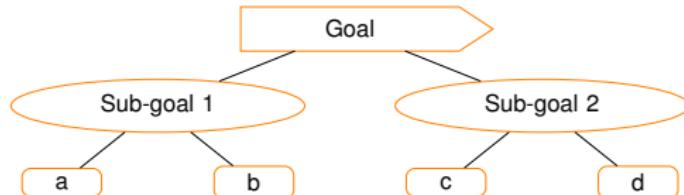
a labeled transition system S

Compilation phase



Attack trees

Introduced by Bruce Schneier in 1999.



Attacks:
ac, ad, bc, bd

3 types of internal nodes:

Or

And

Sequential
[Jhawar et al. , 2015]

$$\square \in \{\otimes, \oslash, \oslash\}$$

Plan

1 Background definitions

2 3 notions of soundness

- Admissibility
- Consistency
- Completeness

3 Checking Admissibility

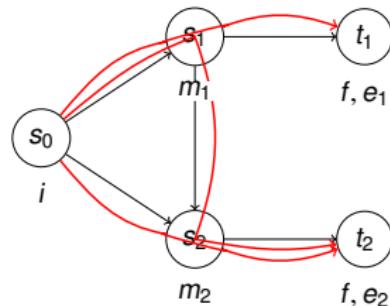
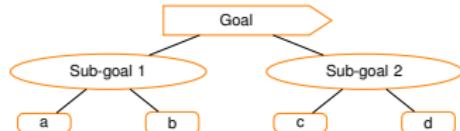
Attack goals

Given by a pair of initial conditions and final conditions:

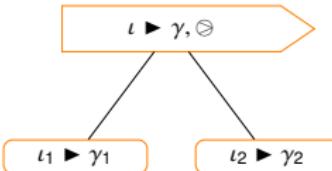
$$\iota \blacktriangleright \gamma$$

with path semantics $[\iota \blacktriangleright \gamma]_S$:

$$[i \blacktriangleright f]_S = \text{paths from } i \text{ to } f$$



\sim



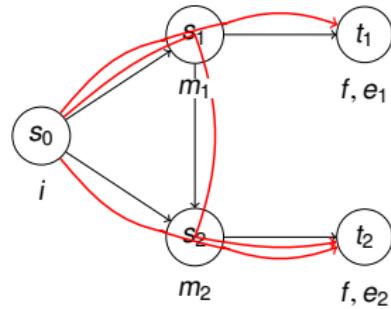
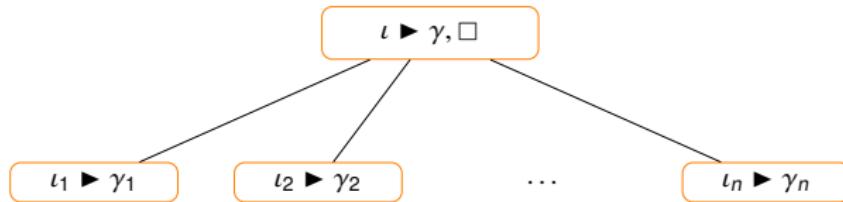
Attack goals

Given by a pair of initial conditions and final conditions:

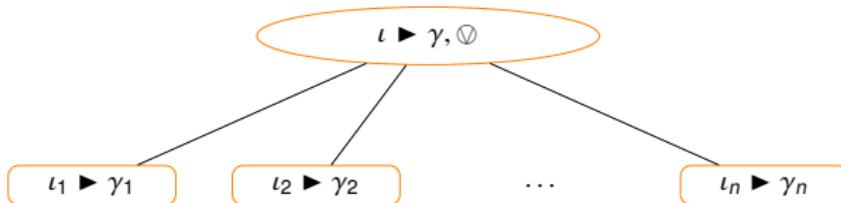
$$\iota \blacktriangleright \gamma$$

with path semantics $[\iota \blacktriangleright \gamma]_S$:

$$[i \blacktriangleright f]_S = \text{paths from } i \text{ to } f$$

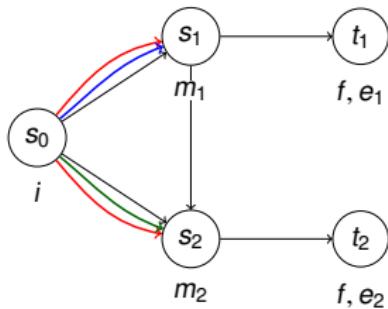


Path semantics for \otimes

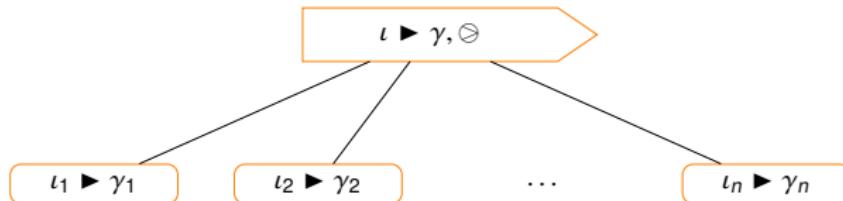


$$[(l_1 \triangleright \gamma_1) \otimes (l_2 \triangleright \gamma_2) \otimes \dots (l_n \triangleright \gamma_n)]_S = [l_1 \triangleright \gamma_1]_S \cup [l_2 \triangleright \gamma_2]_S \cup \dots [l_n \triangleright \gamma_n]_S$$

$$[(i \triangleright m_1) \otimes (i \triangleright m_2)]_S$$

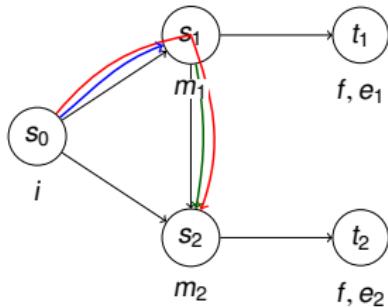


Path semantics for \otimes

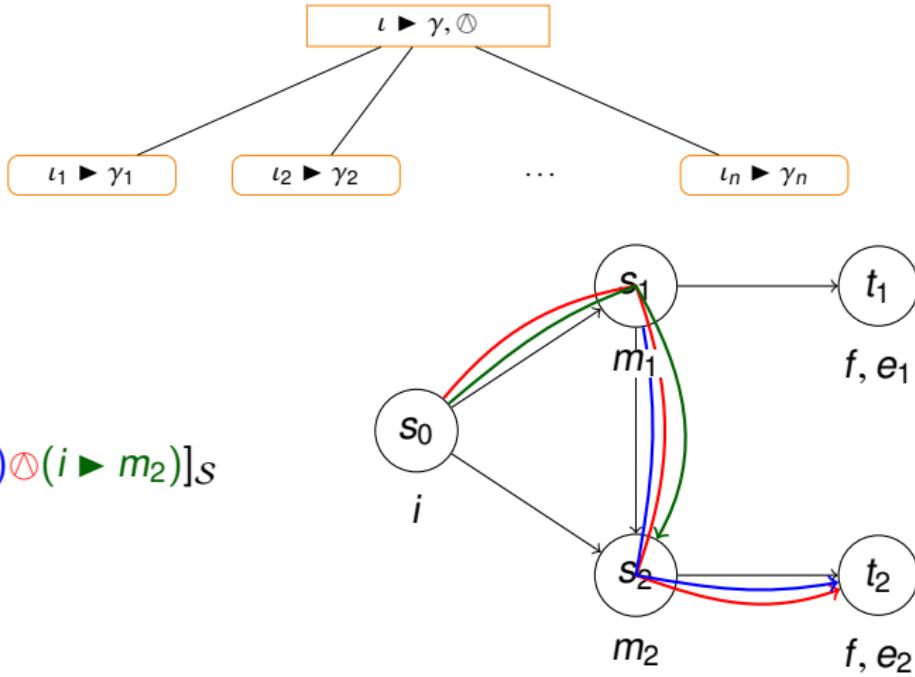


$$[(l_1 \triangleright \gamma_1) \otimes (l_2 \triangleright \gamma_2) \otimes \dots (l_n \triangleright \gamma_n)]_S = [l_1 \triangleright \gamma_1]_S \cdot [l_2 \triangleright \gamma_2]_S \cdot \dots \cdot [l_n \triangleright \gamma_n]_S$$

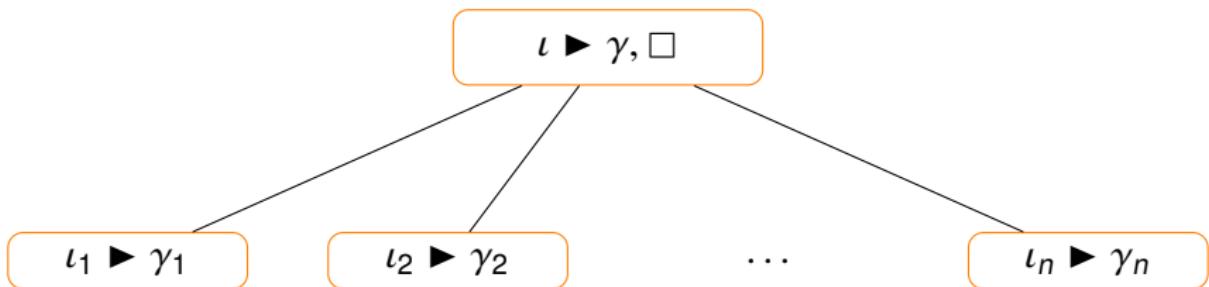
$$[(i \triangleright m_1) \otimes (m_1 \triangleright m_2)]_S$$



Path semantics for \oslash



Soundness

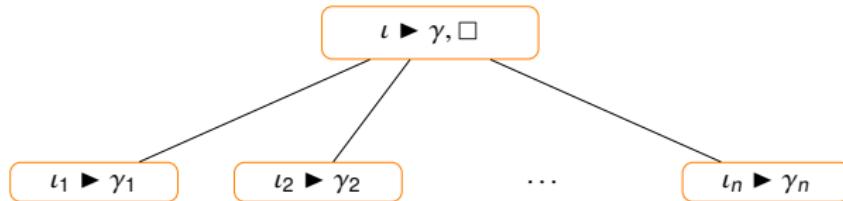


Compare two sets of paths:

$$[(\u03b9_1 \u2297 \u03b3_1) \square \dots \square (\u03b9_n \u2297 \u03b3_n)]_S \text{ versus } [\u03b9 \u2297 \u03b3]_S$$

in 3 different manners \leadsto *Admissibility, Consistency, and Completeness*

Soundness notions



Definition (Admissibility)

$$[(\iota_1 \blacktriangleright \gamma_1) \Box \dots \Box (\iota_n \blacktriangleright \gamma_n)]_S \cap [\iota \blacktriangleright \gamma]_S \neq \emptyset$$

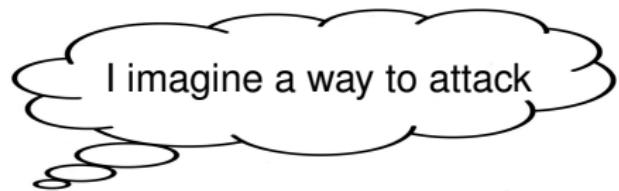
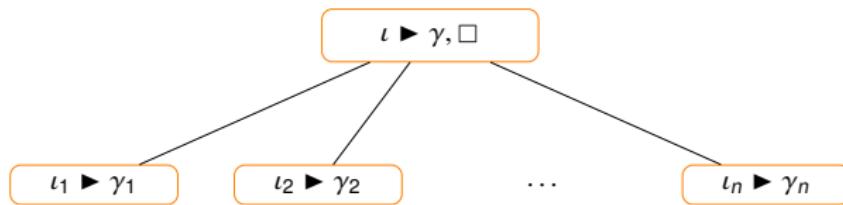
Definition (Consistency)

$$[(\iota_1 \blacktriangleright \gamma_1) \Box \dots \Box (\iota_n \blacktriangleright \gamma_n)]_S \subseteq [\iota \blacktriangleright \gamma]_S$$

Definition (Completeness)

$$[(\iota_1 \blacktriangleright \gamma_1) \Box \dots \Box (\iota_n \blacktriangleright \gamma_n)]_S = [\iota \blacktriangleright \gamma]_S$$

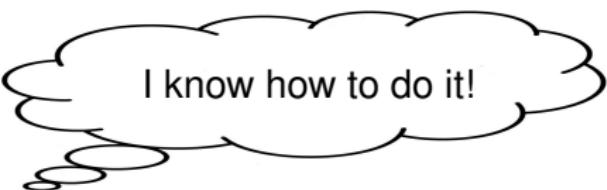
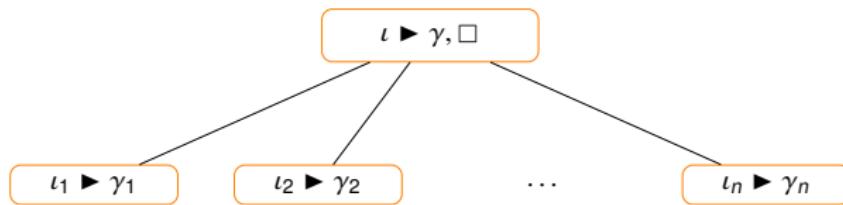
Admissibility



Definition (Admissibility)

$$[(\iota_1 \blacktriangleright \gamma_1) \Box \dots \Box (\iota_n \blacktriangleright \gamma_n)]_S \cap [\iota \blacktriangleright \gamma]_S \neq \emptyset$$

Consistency

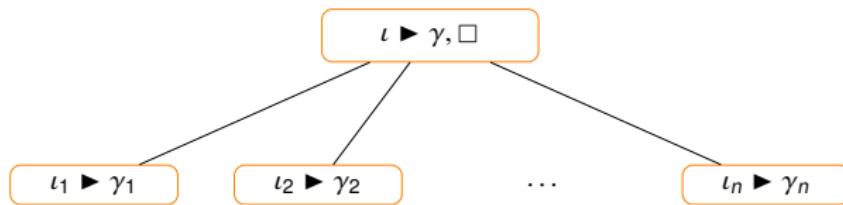


Definition (Consistency)

$$[(\iota_1 \blacktriangleright \gamma_1) \Box \dots \Box (\iota_n \blacktriangleright \gamma_n)]_S \subseteq [\iota \blacktriangleright \gamma]_S$$

Completeness

That's the only way to do it!



Definition (Completeness)

$$[(\iota_1 \blacktriangleright \gamma_1) \Box \dots \Box (\iota_n \blacktriangleright \gamma_n)]_S = [\iota \blacktriangleright \gamma]_S$$

Plan

1 Background definitions

2 3 notions of soundness

- Admissibility
- Consistency
- Completeness

3 Checking Admissibility

The decision problem $\text{ADM}(\square)$

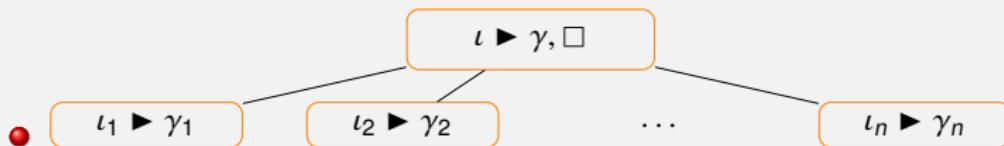
For $\square \in \{\otimes, \oslash, \oslash\}$

Definition (Admissibility)

$$[(\iota_1 \blacktriangleright \gamma_1) \square \dots \square (\iota_n \blacktriangleright \gamma_n)]_S \cap [\iota \blacktriangleright \gamma]_S \neq \emptyset$$

$\text{ADM}(\square)$

Input:



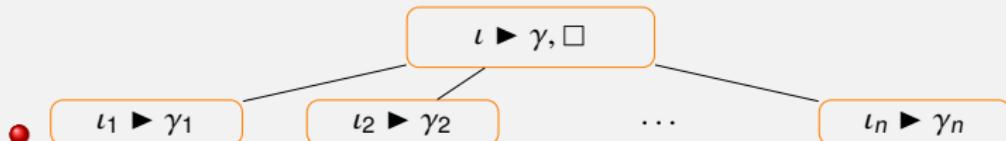
- A labeled transition system S

Output: yes if Admissibility holds, no otherwise.

Admissibility: computational complexity

ADM(\Box)

Input:



- labeled transition system \mathcal{S}

Output: yes if Admissibility holds, no otherwise.

Theorem

$ADM(\Diamond)$ and $ADM(\Diamond)$ are in P.

Theorem

$ADM(\Diamond)$ is in PSPACE.

Conclusion & Future work

Conclusion

- 3 notions of soundness: Admissibility, Consistency, and Completeness.
- Deciding admissibility is in P for \Diamond and \oslash , and in PSPACE for \oslash .

Future work

- Exact complexity of $\text{ADM}(\oslash)$.
- Complexities for consistency and completeness.

- Implementation of the notions in the tool ATSyRA [Pinchinat *et al.*, 2015].
- Extension to system models with quantitative aspects.

Thank you for your attention.

Questions?