Differential Privacy Analysis of Data Processing Workflows

Marlon Dumas, <u>Luciano García-Bañuelos</u>, Peeter Laud

Motivating example

Conflicting goals: Privacy vs. Utility

We need to release **aggregate** information about data without leaking information about an **individual** involved in the incident

- Aggregate info: Number of crew members of nationality X in the ship
- Individual info: Is a particular crew member of nationality X?

Problem: Aggregate information may leak information on individuals Number of crew members of nationality X in the ship,

Number of crew members of nationality X in the ship excluding Y

Differential privacy (Dwork 2006)

 ${\cal K}$ gives ϵ -differential privacy if for all values of DB, DB' differing in a single element, and all S in $Range({\cal K})$

Differential privacy (Laplacian noise)

NAPLES project's goal

Develop theoretical foundations for implementing tools that

- Let one model stakeholders and flows in the Business Process Model and Notation (BPMN)
- Find data leaks in these process models, taking into account the Privacy-Enhancing Technologies used in the as-is models
- Quantify leakages using differential privacy
- Quantify accuracy loss
- Suggest relevant privacy-enhancing technologies to reduce privacy leaks

See http://pleak.io

Usage scenarios

- Support privacy audit of existing system
 - •What will each stakeholder of the System learn about a private data object? e.g. with respect to differential privacy
- Build a new privacy-aware system
 - •What will each stakeholder of the System learn about each private data object?
 - •Which Privacy Enhancing Technologies would help reducing the leakage?

Architecture

Adding privacy-enhancing technologies

Annotating the model with DF and sensitivity bounds

Differential Privacy Disclosure (Roles)

Party	Data Collection	Differential Privacy (&)
Emergency Officer	Evacuees	0.1
Emergency Officer	Communities	Full disclosure
Dispatcher	Evacuees	min(0.1, 0.1*0.2) = 0.02
Dispatcher	ReservedFor	0.2
Dispatcher	Ships	0.1 + 0.1 = 0.2
Dispatcher	Communities	Full disclosure
Organization Y	Evacuees	min(0.1, 0.1*0.2) = 0.02
Organization Y	Ships	0.1 + 0.1 = 0.2
Organization Y	ReservedFor	0.2

Data processing workflows

Model with DF/sensitivity bounds

Generalized sensitivity

• Generalized distances – any partial order with addition and least element

$$d_X: X \times X \to V_X$$

- $f: X \to Y$ has sensitivity $c_f: V_X \to V_Y$
- Differential privacy is a specific case of generalized sensitivity

$$d_{\mathrm{dp}}(\chi, \chi') = \sup_{y \in Y} \left| \ln(\chi(y)/\chi'(y)) \right|$$

ullet Generalized sensitivity is composable, i.e. $c_{f\circ g}=c_f\cdot c_g$

Proposition 2. For $i \in \{1, ..., n\}$, let $f_i : X \to Y_i$ be c_i -sensitive with respect to the distances d_X on X and d_{Y_i} on Y_i . Let $f' : Y_1 \times \cdots \times Y_n \to Z$ be c'_i -sensitive with respect to the distances d_{Y_i} on Y_i and d_Z on Z (for all $i \in \{1, ..., n\}$). Then the mapping $g : X \to Z$, defined by $g(x) = f'(f_1(x), ..., f_n(x))$, is $\sum_{i=1}^n c_i c'_i$ -sensitive with respect to the distances d_X on X and d_Z on Z.

Model with DF/sensitivity bounds

	x_3	x_4	x_5	x_6	$ x_7 $		
x_1	$\epsilon_A[x_1,x_3]=0.2$	$\epsilon_A[x_1, x_4] = 0.2$					
x_2		_					
d_{dp}							

	x_3	x_4	x_5	x_6	x_7		
x_1	$c_A[x_1, x_3] = 0.4$	$c_A[x_1, x_4] = 0.4$					
\mathcal{X}_2		J					
d_c							

Model with DF/sensitivity bounds

Result of analysis

	x_3	x_4	<i>x</i> ₅	x_6	<i>x</i> ₇
x_1	0.2	0.2	0.08	0.08	0.064
x_2			0.2		0.16

 d_{dp}

	<i>x</i> ₃	x_4	<i>x</i> ₅	<i>x</i> ₆	<i>x</i> ₇
x_1	0.4	0.4	0.16	0.16	0.128
x_2			0.4		0.08

 d_c

Differential Privacy Disclosure of a Data Source to a Party

$$\epsilon_r(x_1) = d_{dp}[x_1, x_5] + d_{dp}[x_1, x_6]$$

= 0.08 + 0.08 = 0.16

Outlook

- Extend privacy analyzer to cover a broader class of BPMN process models
 - E.g. adding conditional branching
- Principles of program analysis for DP
 - For arbitrary generalized metrics and sensitivities
- Defining a super set of BPMN, with ad-hoc constructs to model privacy related concerns (i.e. PA-BPMN)
- Building the PETs library & extend PA-BPMN to cater for other PETs besides differential privacy

Thanks!

Research funded by DARPA (Brandeis program 2015-2019)