

Transforming Graphical System Models to Graphical Attack Models

Joint work with Marieta Georgieva Ivanova, René Rydhof Hansen, and Florian Kammüller

Christian W. Probst
Language-Based Technology, DTU Compute

From organisational models to attacks

- System Model
- Analytic approach
- Success based on experience and imagination of the modeller

Attack Attack Attack Attack Attack Attack Attack

- Attack trees
- Descriptive method
- Success based on experience and imagination of the consultant/defender

Example System

System Model Components

- Locations in the organisation linked by directed edges in the graph.
- Actors in the modelled organisation.
- Processes modelling information sharing or policies.
- Items modelling tangible assets in the modelled organisation, for example, access cards, harddrives, etc.
- Data modelling intangible assets.

Constraining Actions

- Policies regulate access to locations and assets. Policies consist of required credentials and enabled actions.
- Credentials are required data, items, or an identity.

Graphical System Model

KLAIM: Kernel Language for Agents Interaction and Mobility

- Mobile components
- Communication via tuple spaces
- Distribute/retrieve data and processes
- Localities as first-class citizens
 - Created, communicated, scoping
- Similar ideas have been adapted by industry
- Mostly based on LINDA
 - JavaSpaces by Sun
 - TSpaces by IBM
 - Plus implementations for other programming languages
 - Also used for ubiquitous computing (sTuples) and the Semantic Web (Triple Spaces, Semantic Web Spaces)

Attack Generation is White-box Testing of System Models

- Structured system model for systematic, formal treatment.
- With clearly defined semantics.
- Specification of attacker goals.
- Formal specification of transformation.

From Models to Attacks No Asset N

Graphical Attack Model

Attack Alternatives

Root node "steal money"

- Hire more skilled attacker.
- Acquire card and access codes.
- Attack set-top box from LAN.
- Make cardholder pay.
- Social-engineer cardholder to make payment.
- Tamper payment data.
- Fake information the cardholder sees on TV.
- Fake set-top box.
- Intercept connection between set-top box and payment provider.

Generating Attack Trees

The General Approach.

- Identify the policy P to break.
- Identify the required assets to fullfil P.
- Try to obtain these assets.

No Asset Mobility

- Assumes an asset in the system, which an attacker should not be able to obtain.
- Assets are (for now) immobile.
- Apply general approach for all locations of the asset.

Transforming Locations

- Locations are transformed into disjunction of all paths through the model.
- Recursively invokes attack transformation for the first step and the rest.

Transforming Policies

- For every policy, missing credentials are identified.
- Recursively invokes attack transformation for missing credentials.

Based To Chinology

Assets

- Assets can be available at different locations.
- Each location is transformed to a get action.

... to Graphical Attack Models ...

Asset at a Location

Assets at locations/items is transformed to in action.

Asset Contained in an Item

- For assets contained in an item, that item is first obtained.
- Then, the transformation is invoked again

No Asset Mobility

... to Graphical Attack Models ...

Asset at an Actor

For assets at actors, social engineering actions are generated.

The IPTV Case Study – Attacker Charlie

goal: get cash goal: in[C,PIN(C)](cash) get C, PIN(C) goal: get Charlies' credentials and perform action goal: get Alice's credentials and perform action get card goto Home goto Door and get trust A1: break in, A2: carer, A3: IPTV move Door move Home perform in at Alice

(... to Graphical Attack Models ... No Asset Mobility

Resulting Attack Model - Charlie

The Problem of Details

Feature creep

- Attack trees will contain many fine-grained details.
- These are very hard to generate from models.
 - Scan wireless connection to obtain access code for card.
 - Requires knowledge about card, communication between set-top box and card, availability of scanner
- Similar to the elephant.
- Can partly be based on libraries, but...

Adding Asset Mobility

- Attackers can make assets move.
- Obtaining assets may be "simpler" at other locations:
 - Less risk of detection.
 - Blame somebody else.
 - Faster attack.
- Attack generation takes all possible asset locations into account.
- There is no free dinner the resulting attack trees may become huge!

The TRE_SPASS Approach to Risk Assessment

- Information security threats to organisations have changed completely over the last decade
- New attacks cleverly exploit multiple organisational vulnerabilities, involving physical security and human behaviour.
- Defenders need to make rapid decisions regarding which attacks to block, as both infrastructure and attacker knowledge change rapidly.

The TRE_SPASS Process

The TRE_SPASS Model

The Attack Navigator

The Attack Navigator

- Tool to support prediction, prioritisation, and prevention of complex attack scenarios.
- Also an environment where all tools developed within the project can be viewed, accessed and connected.

Conclusion

- System models provide a systematic way to assess vulnerabilities in organisations...
- ...and can be transformed to attack trees.
- This will enables us to map system components to quantitative results for attack trees.
- Right level of detail is important!