
Pre-proceedings of
The International Workshop on Graphical Models for Security 2014

c© EA Gjære & PH Meland
This work is licensed under the
Creative Commons Attribution License.

Threats management
throughout the software service life-cycle

Erlend Andreas Gjære
SINTEF ICT

Trondheim, Norway
erlendandreas.gjare@sintef.no

Per Håkon Meland
SINTEF ICT

Trondheim, Norway
per.h.meland@sintef.no

Software services are inevitably exposed to a fluctuating threat picture. Unfortunately, not all threats
can be handled only with preventive measures during design and development, but also require adap-
tive mitigations at runtime. In this paper we describe an approach where we model composite services
and threats together, which allows us to create preventive measures at design-time. At runtime, our
specification also allows the service runtime environment (SRE) to receive alerts about active threats
that we have not handled, and react to these automatically through adaptation of the composite ser-
vice. A goal-oriented security requirements modelling tool is used to model business-level threats
and analyse how they may impact goals. A process flow modelling tool, utilising Business Process
Model and Notation (BPMN) and standard error boundary events, allows us to define how threats
should be responded to during service execution on a technical level. Throughout the software life-
cycle, we maintain threats in a centralised threat repository. Re-use of these threats extends further
into monitoring alerts being distributed through a cloud-based messaging service. To demonstrate
our approach in practice, we have developed a proof-of-concept service for the Air Traffic Manage-
ment (ATM) domain. In addition to the design-time activities, we show how this composite service
duly adapts itself when a service component is exposed to a threat at runtime.

1 Introduction

With the emerging paradigm of composite services, i.e. software services which are composed of func-
tionality provided by several services components, possibly involving several service providers, an attack
on a service component implies an attack on the composite service as a whole. Service compositions in
general are highly distributed and have a complex nature, exposing a greater attack surface than tradi-
tional stand-alone systems. To make this kind of services secure enough, it is vital to take a holistic
approach to how they are built, security-wise. This assumes incorporation of activities that deal with
threats at many stages throughout the life-cycle, comprising both design and development as well as the
runtime phase.

At design-time, we can utilise preventive activities for mitigating threats, and at runtime there should
be performed corrective activities to handle the residual threats. It is very optimistic to think that all
threats are known and correctly assessed from the very beginning, e.g. it is not given that we have
reliable knowledge of motivation and available resources for a potential attacker or enough resources to
implement preventive measures. What we do know, is that when a threat escalates, we need to make sure
that our organisation and the system(s) we are trying to protect are prepared to respond effectively.

Our main goal with this paper is to describe a process and tool-chain which combines threat mod-
elling with graphical goal and process models to derive preventive measures, such as security require-
ments for development, and also enables further corrective measures to be automatically applied at run-
time. We have chosen to support security analysis through activities and tools that are already adopted
and in use, although these have not necessarily been previously combined.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


2 Threats management throughout the software service life-cycle

The details of our proposed approach is given in section 2, incorporating our Air Traffic Management
system case study. Through this we explain and demonstrate the use of a threat repository to facilitate
sharing and re-use of threats, goal-oriented modelling with threats, service design with BPMN, model
transformation, threat response recommendation, defining rules for dealing with escalations, and finally
runtime management of composite services. Section 3 discusses strengths and compromises made in this
approach, and section 4 concludes the paper.

Figure 1: A software life-cycle model showing how threats can be modelled and managed at design-time
and prepared for automated service adaptation at runtime.

2 Approach description

Figure 1 gives a visual overview of the threat management life-cycle, outlining both activities in the
process as well as data flow. Key to understanding the advantages of this holistic view are the threat
repository and notification services in the centre, which together connect the dots between the remaining



EA Gjære & PH Meland 3

components and stages. In the requirements engineering process we utilise goal-oriented modelling
(Socio-Technical Security modelling language, STS-ml [18]) to elicit and define security requirements.
Here we also instantiate some of the main threats to our system on an organisational/business level
of abstraction. Further, we use Business Process Model and Notation (BPMN) [13] for designing the
service process of a composite web service. At this stage we do not depend upon how the requirements
engineering has been done, but if STS-ml has been used, we can transform the goal models into process
models with some help from a software tool. The BPMN model defines a service process which can be
deployed and executed as a web service, and here should the threats be refined on a more technically
detailed level. Based on this, we can ask for accordingly technical countermeasures from the threat
repository. We can also define rules for responding to particular events, if we are able to monitor the
service components at runtime. Whenever an alert is received from the monitors, these rules will be
evaluated by a service runtime environment (SRE) tailored for this purpose. If is a match is found, a
re-composition can for example be triggered, replacing a service component instance with another one
providing similar functionality. Alternatively, one can move along in the life-cycle to re-design of the
system and/or the particular service.

2.1 Case study: Air Traffic Management

For demonstrating our proof-of-concept, we have chosen a case study based on Air Traffic Management
(ATM). The European air navigation services and their supporting systems are currently undergoing
a paradigm shift, most notably through the System Wide Information Management (SWIM) [6]. Go-
ing from numerous incompatible stand-alone systems, SWIM enables cross-border collaboration and
data exchange between many systems and organisations with its service oriented architecture (SOA)
approach. This raises prospects for an expansive registry of composite services, which hopefully will
contribute to maximizing efficiency of the airspace with time. The service we demonstrate is one that
gathers various information about an airport to be used e.g. in the cases when a pilot wants a fresh report
on the flight’s destination. As seen from the perspective of this service provider, further details on this
composite service sample is provided along with the description of each step in our approach below.
Security-experts from three ATM organisations were involved in the modelling, using already defined
security requirements and system specifications from the SESAR project [17] through which SWIM is
developed. However, the models provided in this paper only represent a limited excerpt of the SWIM
system model, and the demonstrator we have implemented is not based on service components actually
provided through SWIM. Work on collecting and analysing feedback from the actual case study users is
yet to be completed, and results as such are hence not considered in this paper.

2.2 Knowledge management through a threat repository

Every part of our approach is tied together by the concept of having a centralised repository of threats
[9]. While threats can always be created and modelled independently in the different diagram types that
we use, a persistent threat repository provides better conditions for import and re-use of threats [12]. It is
of essence here that each threat in the threat repository is associated with a unique threat identifier (ID),
and that this threat ID is stored along with the threats in the various diagrams we create. This allows the
tools to always access (meta-) information on threats stored in the repository, and for the threats to be
passed between the models and pushed further through deployment into the runtime phase.

In our proof-of-concept, we have utilised an existing online threat repository service [16], providing
an application programming interface (API) for accessing its large collection threats externally. The API



4 Threats management throughout the software service life-cycle

offers functionality for searching for threats in terms of their name, class (business-level or operational
level), or business domain tags. Some additional meta-data may also be available, such as a textual
description and links to further information resources. For the two graphical modelling tools we present
below, we have implemented a plug-in that takes advantage of this API, as shown in Figure 2. In addition
to the API, we have access to a web-based user interface which allows more info to be looked up on each
threat, including suggestions for countermeasures and relationships with other threats. A threat uploader
tool has also been developed for adding new threats to the threat repository, using existing diagrams.

Figure 2: Importing a domain-specific threat from the threat repository into a graphical model.

Threats related specifically to ATM are found in the threat repository under the business domain
selector Air Traffic Management. These threats can both be general ones that are known to also apply in
that particular domain, such as Gain access to server, as well as threats more specific to ATM only – e.g.
A/G SWIM Access Point Denial of Service. Generic high-level threats, like Tampering, can for instance
be specialised into a domain specific threat such as False airport coordinates.

2.3 Requirements engineering

While requirements engineering can take many shapes and forms, graphical goal-oriented modelling
is an approach well suited for complex and distributed socio-technical systems (of systems) [14, 15].
Where goals justify why the system and its functions are needed, threats justify why security for the
system is needed.

In the STS model from our case study, depicted in Figure 3, we see that the pilot’s request for a
destination report is transmitted to SWIM rather than directly to a specific service provider. Since the
requesting aircraft’s destination is information already known inside SWIM, the request is complemented
with this information here. Through its service registry, SWIM can select and invoke an actual service



EA Gjære & PH Meland 5

Figure 3: Goal-oriented model (STS-ml) of the airport report service – the red triangles are threats.

provider on behalf of the pilot/aircraft, possibly depending on the particular destination’s location. The
airport report contains various local information on the airport, along with weather conditions and a map
onto which various local observations (e.g. wind meter readings, contaminations) are plotted. Threats
from the perspective of the airport report provider, would in this case be any kind of tampering with
externally acquired data or unavailability of any of the service components, which might hold them
accountable for impacting flight safety. A threat worth including could also be denial of service within
the SWIM area of responsibility, since that could block an airport report to arrive timely on the provider’s
behalf – although not being the airport report service provider’s actual responsibility in the end.

Supported by the STS-Tool [18], we are able to both perform both graphical modelling as well as
advanced formal analyses of the models. This includes checking consistency and detecting conflicts
between goals and requirements, as well as analysing (visually in the model) how threats can propagate
throughout the modelled system [11]. The STS-Tool also supports generating a security requirements
document which contains the information we have added on threats. In addition, the document generator
performs the aforementioned threat propagation analysis so that the results can be output in textual form,
as shown in Figure 4. In our case specifically, the A/G SWIM Access Point Denial of Service threat
does not have a propagated impact, and is hence not mentioned in the document, as it is directed at an
actor external to the modelled system owner. Although not implemented, the document generator could
potentially use the threat IDs provided in the model to look up information on countermeasures, and
hence include that in the document for further reference.

2.4 Service design

In the BPMN model, we specify the process flow which our composite service shall follow. Herein lies
the advantage of standardised BPMN as the service process language, that the graphical models translate
into well-defined execution semantics, which in turn can be executed in business process model engines
as a web service. Although BPMN has no explicit language construct for threats, we have in previous
work concluded that e.g. the standard ErrorBoundaryEvent element can be used for representing threats



6 Threats management throughout the software service life-cycle

Figure 4: Propagation of threats can be analysed with the generated security requirements document.

[10].
While our BPMN model in Figure 5 may appear similar to the STS model, the service tasks (yellow

boxes) now represent atomic components of a process, unambiguously ordered as an executable process
flow. Moreover, each service task implies a single invocation of a particular web service, taking process
variables as (optional) input to operations defined by each service components’ web service definition
file (Web Service Definition Language, WSDL [20]). Although not visible in the model, the first service
task, Airport geocoding, takes as input the IATA code of an airport (e.g. FCO for Rome, Fiumicino) and
queries a public airport information service. The returned value, which is also defined by the component’s
WSDL file, should be a pair of coordinates which pinpoint the airport’s geographical location. These
coordinates are in turn used as input for the following two tasks, which can be done in parallel, namely
to obtain the weather and any local observations from/surrounding the location in question. A fourth
service takes care of plotting the gathered information on a map, whereas the final (internally maintained)
service wraps up and creates the report data to be returned to the pilot’s application.

Figure 5: Service process specified in BPMN, using standard ErrorBoundaryEvent elements for threats.

We have extended the Activiti Designer tool [1], built as a plug-in for the Eclipse IDE [8], in order
to support our BPMN modelling. We have chosen to store the threat ID in the BPMN 2.0 XML file, as
shown in Figure 6, which is in line with the standard. This results in compatibility between different
modelling tools, at least when it comes to portability of the graphical model. What is not part of BPMN
is functionality for producing several alternative composition plans, i.e. alternative combinations of
service components, that each provide the very same functionality [21]. This is possible when you have



EA Gjære & PH Meland 7

Figure 6: Using an ErrorEventDefinition XML-element with errorRef attribute to store the threat ID.

more than one possible candidate services for a service task, while still maintaining the required level of
functionality. In our proof-of-concept, we have two candidates for the map service. The total number of
composition plans equals the Cartesian product of all service component candidates for all service tasks,
i.e. all possible combinations of service implementations. These different composition plans can in turn
be ranked against one or several criteria, such as level of trustworthiness, quality-of-service, etc., if this
information is maintained on behalf of the components [4, 5].

2.4.1 Model transformation

In order to support security information from the requirements engineering phase to be maintained at
development time, essential parts from the goal models are possible to transform into a simple process
model skeleton. The STS-Tool is not only, as previously described, able to output a textual description
of the security requirements and threats. The STS-models can also be output to a machine-readable
security requirements specification (SRS) format for use in the transformation. Although there is no
way to completely automate the transformation from STS to BPMN, a transformation tool can provide
a structured way to manually support selection of threats that are relevant for the service process model
[2], as shown in Figure 7.

Figure 7: Tool-supported model transformation of threats from STS-ml (via SRS) to BPMN.

Transformation of STS-ml threats into BPMN threats is preferable in cases where we have input
from monitors that can give the modelled threats a meaningful role at runtime. An advantage of the tool-



8 Threats management throughout the software service life-cycle

supported model transformation is that the threat ID, which enables linking a modelled threat to the threat
repository, can be conveniently transferred between the models. In that way, any further transformation
and use of the threat can be done with support from the threat repository, and the information always to
be found here.

In our case study, we have Unavailable component as a threat in the goal model, which can be
specialised into e.g. a DDoS attack on service component threat in the service process. This threat can
be fairly easy to monitor, and we hence are potentially able adapt our service in case this threat escalates.

2.4.2 Threat response recommendations

A separate component, also integrated with the online threat repository, implements logic and knowledge
to find and recommend possible mitigations for threats [3]. These countermeasures can potentially be
provided in various formats, ranging from textual descriptions to actual code or services.

Figure 8: Threat ID is maintained so the service process modelling tool can ask for countermeasures.

In order to obtain the threat response recommendations, the threat IDs are gathered from the BPMN
diagram and the relevant ErrorBoundaryEvent elements. Again, the threat ID is input to the threat
repository, and returned are the countermeasures. As there may be several countermeasures available for
each threat, the various options are ranked before being presented to the service designer.

2.4.3 Rules definition

Not only finding appropriate countermeasures, but actually implementing those that are appropriate, is
essential to improve security of the service. Based on threats defined in the diagram and any other events
that are monitored and one can be notified about, rules can be defined to address the scenarios we are
able to foresee. Rules assume some kind of monitoring in place to provide actual value, but as long as the
format can match what the SRE is able to interpret from the individual monitors, the rules are in practice
agnostic to monitoring implementations.

The service tasks form the basis for defining such rules, as shown in Figure 9. The tasks are both
accurate in targeting the rule’s scope, yet independent of the actual service implementation we choose.
Therefore, we do not need to define individual rule-sets for each potential composition plan.

In our case study service process we have already modelled a DDoS-attack occurs on service com-
ponent threat, and this can be addressed by choosing Threat level change as the event type, and then
selecting the service task it applies to. For values in the rule, we choose a decimal number between 0 and
1 (inclusive). This matches our threat monitoring module, which can send alerts with probability value
for the escalation of threats [3]. Further, in the scope section of the rule editor, it is possible to define
where in the process the rule shall apply. If a particular threat escalates for a component, we might not
need to perform reactive measures unless it happens before, after or during the execution of a particular



EA Gjære & PH Meland 9

Figure 9: Threat ID appears in rule editor when threatened task is selected as basis for a new rule.

task in our process. Anyhow, we have several options for also defining the action to perform when the
rule is matched, such as simply stopping the service execution (and further provision), or trying to re-
compose or reconfigure the service. We also have an option to launch an additional service process, e.g.
one that might initiate hardening of other parts of the system, and/or send notification messages to clients
and/or service technicians. In the end, we might end up with a list of several rules for several service
tasks, or simply one for the one we have defined in our case study, as shown in Figure 10.

Figure 10: A rule has been defined for responding to a DDoS-attack on the map service.

2.5 Runtime management

2.5.1 Notifications

In order to operate a self-adapting service infrastructure at runtime, a commonly supported system for
machine-to-machine (M2M) messaging is needed. Since there may be an endless number of services
and SREs utilising this infrastructure, we cannot provide all messages to everyone. A publish-subscribe
pattern is rather suitable, since we already define rules for what we need to respond to. Hence, appropriate
subscriptions can be derived automatically from these rules and registered by the SRE. The SRE will then
receive notifications only as specified, although the granularity of the rules will determine the relevance
of e.g. slight variations in threat level probabilities (not all changes will actually trigger an action).



10 Threats management throughout the software service life-cycle

The SRE in our proof-of-concept creates subscriptions based on the rules which are attached to ser-
vice deployment. It receives notifications according to the subscriptions, and whenever such notifications
arrive, all rules are being checked for a match. The messaging system is based on Apache ActiveMQ
[7], which utilises the Java Messaging Standard (JMS) to provide compatibility for many platforms and
alternative protocols. ActiveMQ subscriptions are registered with a centralised broker, or network of
brokers for horizontal scalability, since it is the broker(s) that deal with receiving and dispatching the
notifications to all subscribers. Our broker is in addition deployed on a cloud-based infrastructure, for
further increased scalability. In addition to threat level changes, we have implemented support for no-
tifications about changes in trustworthiness, service contract violations, security properties of service
components, service runtime context, and service component changes. The notifications are delivered on
a best-effort basis, and may of course arrive too late in some cases (depending on how quickly a problem
is discovered and duration of the attack).

Figure 11: The SRE has replaced the Google map service with Bing Maps through a recomposition.

2.5.2 Dynamic adaptation

Since a threat monitor has now purportedly detected that the original map service used in our case study
is hit by a DDoS-attack, the SRE becomes notified about this through the notification service. In order
to trigger events in the self-configuring service process, the SRE must naturally be able to receive such
notifications and align these with the previously defined and deployed rules. As it finds a match with
the rule we defined earlier on DDoS-attacks, the SRE initiates the specified action according to that rule,
which is here to try a recomposition.

Since we had support for two different map services providing the same functionality, we have pre-
pared an additional composition plan for the airport report service. When the notification concerning a
DDoS-attack on the map service is triggered and received by the SRE, the first plan no longer satisfy



EA Gjære & PH Meland 11

our security requirements through verification [22]. Since the rule in Figure 10 provides the match, a
recomposition is initiated accordingly. The original composition plan with the DDoS-ed map service
will be ignored, and the second plan becomes the top-ranked one based on a chosen ranking criteria.
The recomposition proceeds with deploying the second composition plan, containing the alternative map
service instead of the original one. Nevertheless, the same level functionality is provided, as illustrated
with Figure 11 where the airport reports, before and after recomposition, are lined up next to each other.
Before the new composition is deployed, the SRE invokes a runtime verification, and the time this takes
depends on the complexity of the composition. This is a well-known scalability issue associated with
any kind of runtime adaptation.

3 Discussion

An obvious shortcoming to our approach is that we do not integrate a proper information security risk
assessment anywhere. This is usually where threats are actually identified in a systematic manner, and
where they are ranked in the order of overall risk. With this approach, we do assume that such risk
assessment activities are already taking place, and that the results from these are actively used to enrich
the goal and service process models. However, we also suggest that enrichment can also occur in the op-
posite direction, so that threat discoveries made during the requirements engineering and service design
process can indeed enrich the identification phase of a risk assessment. If tool-support is to be added
for this interactivity, it is indeed possible to use the threat repository service for exchanging the threat
information between applications.

In terms of threats within the service process model, we have been forced to make a pragmatic
compromise. Since BPMN is a process language, it is capable of defining an entire process as it is
intended to flow, however not without language constructs for handling quite a few exceptions. Threats
also provoke exceptions to normal flow, and although explicitly missing from the language, we have
earlier concluded that the graphical language itself is even capable of representing what is needed here
[10]. Still, we found that runtime support for handling externally triggered notifications on the process
level is not handled in BPMN software tools such as the Activiti process engine. That is the reason we
developed a custom plug-in for the SRE, and consequently a compatible rule editor was developed and
integrated into the BPMN tool as well.

Another limitation with the tool-set we present, is that process diagrams are not supported with
automatic reflection of changes in the goal diagrams. This may impact an iterative process which goes
back and forth between goals and process models. Mitigating this problem through re-transformation
is possible, albeit not very appealing, since any process information that is not part of the goal diagram
and its security commitments will be lost. Our transformation tool is however capable of comparing any
BPMN-diagram with a security requirements specification document, in order to point out nonconformity
with the original security requirements. While not yet implemented, this tool could in theory be made
capable of also including threats in the analysis, and point out which threats are missing in the BPMN-
diagram. The problem here is however if a business-level threat from the goal model, such as “Integrity
error”, has been manually sub-typed by the process designer to either one or several operational-level
threats, e.g. “Checksum mismatch” or “Certificate verification failed”. Our threat repository does not
express a hierarchy of the threats, and we cannot automatically trace neither the parent from a child
nor the children of a parent. It is not always straightforward to create such threat hierarchies either, in
particular when a child has several parents.

The main motivation for threat modelling described in this paper is related to preventive and correc-



12 Threats management throughout the software service life-cycle

tive measures for design-time creation and runtime execution of composite services. Another significant
motivation that we have not delved into here is the need for engineers and business-people to commu-
nicate better around security when systems are designed and implemented, as pointed out by Wolter et
al. [19]: “It is evident that both security and business domain experts need to be able to define their secu-
rity goals collaboratively on a common abstraction level”. For this we believe that the use of threats in
well-defined graphical modelling languages, such as STS-ml and BPMN can be a positive contribution.
We currently have ongoing work on practical evaluation of the presented tools and services within the
ATM domain (and others), along with other functionality on security requirements management which
is out of scope for this paper. Through this evaluation we hope to gain more knowledge on what will
be necessary for a broad uptake of such an approach to managing threats. Along with the already avail-
able STS-Tool [18], the described software modules will eventually be released as part of our extended
BPMN tool, and/or as online services.

4 Conclusion

We have demonstrated how graphical threat modelling can benefit design-time mitigation and runtime
correction of unwanted incidents. Though a service may be regarded as secure enough in the early
life-cycle phases, risks are not static, and threats, vulnerabilities, probabilities and consequences can
change abruptly. Tool-support is therefore essential to be able to analyse which measures to implement
at design-time, and create mechanisms to handle the residual ones at runtime through e.g. automatic
adaptation.

An essential part of the tool-chain we have presented is the use and re-use of threats through a shared
threat repository that many tools are able to interface with. Having a common reference on the name,
nature and mitigation options for the threats has been valuable to us both during the graphical modelling
at design-time and for runtime alert messaging and response. By basing our work on existing languages
and tools, we believe that chances of uptake is significantly larger compared to a comprehensive tool-set
built from scratch. However, this also means that some transitions between the tools can be seen as a
bit cumbersome. For our future work we seek to gain more knowledge on usability and integration with
existing risk assessment methods that should complement the threat modelling.

5 Acknowledgement

The authors would like to thank in particular Francesco Malmignati, Balazs Kiss, Mauro Poggianella,
Mattia Salnitri, Eider Iturbe and Konstantinos Giannakakis for their technical work related to enabling
our proof-of-concept implementation. The research leading to these results has received funding from the
European Union Seventh Framework Programme (FP7/2007-2013) under grant no 257930 (Aniketos).

References

[1] Activiti (2013): Activiti BPM platform website. Available at http://www.activiti.org/.

[2] Aniketos project (2013): Deliverable 5.2 Initial ANIKETOS platform integration. Technical Report. Avail-
able at http://www.aniketos.eu/content/deliverables.

[3] Aniketos project (2013): Deliverable D4.3 Algorithms for responding to changes and threats. Technical
Report. Available at http://www.aniketos.eu/content/deliverables.

http://www.activiti.org/
http://www.aniketos.eu/content/deliverables
http://www.aniketos.eu/content/deliverables


EA Gjære & PH Meland 13

[4] Achim Brucker & Isabelle Hang (2013): Secure and Compliant Implementation of Business Process-
Driven Systems. In: Business Process Management Workshops, Lecture Notes in Business Information
Processing 132, Springer Berlin Heidelberg, pp. 662–674. Available at http://dx.doi.org/10.1007/
978-3-642-36285-9_66.

[5] Achim D. Brucker, Francesco Malmignati, Madjid Merabti, Qi Shi & Bo Zhou (2013): A Framework for
Secure Service Composition. In: ASE/IEEE International Conference on Information Privacy, Security,
Risk and Trust (PASSAT), IEEE Computer Society, Los Alamitos, CA, USA. Available at http://www.
brucker.ch/bibliography/abstract/brucker.ea-framework-2013.

[6] Eurocontrol (2014): System Wide Information Management (SWIM). Available at http://www.

eurocontrol.int/swim.

[7] The Apache Software Foundation (2013): Apache ActiveMQ website. Available at http://activemq.
apache.org/.

[8] The Eclipse Foundation (2013): Eclipse IDE downloads website. Available at http://www.eclipse.org/
downloads/.

[9] Per Håkon Meland, Shanai Ardi, Jostein Jensen, Erkuden Rios, Txus Sanchez, Nahid Shahmehri & In-
ger Anne Tøndel (2009): An Architectural Foundation for Security Model Sharing and Reuse. In:
Availability, Reliability and Security, 2009. ARES ’09. International Conference on, pp. 823–828,
doi:10.1109/ARES.2009.110.

[10] Per Håkon Meland & Erlend Andreas Gjære (2012): Representing Threats in BPMN 2.0. In: ARES, IEEE
Computer Society, pp. 542–550. Available at http://doi.ieeecomputersociety.org/10.1109/ARES.
2012.13.

[11] Per Håkon Meland, Erlend Andreas Gjære & Stephane Paul (2013): The Use and Usefulness of Threats
in Goal-Oriented Modelling. In: Availability, Reliability and Security (ARES), 2013 Eighth International
Conference on, pp. 428–436, doi:10.1109/ARES.2013.57.

[12] E. Oladimeji, S. Supakkul & L. Chung (2006): Security threat Modeling and Analysis: A goal-oriented
approach.

[13] OMG (2011): Business Process Model and Notation (BPMN) Version 2.0. Available at http://www.omg.
org/spec/BPMN/2.0/.

[14] Elda Paja, Fabiano Dalpiaz, Mauro Poggianella, Pierluigi Roberti & Paolo Giorgini (2012): STS-Tool: Using
Commitments to Specify Socio-Technical Security Requirements. In: Advances in Conceptual Modeling,
Lecture Notes in Computer Science 7518, Springer Berlin Heidelberg, pp. 396–399. Available at http:
//dx.doi.org/10.1007/978-3-642-33999-8_48.

[15] Elda Paja, Fabiano Dalpiaz, Mauro Poggianella, Pierluigi Roberti & Paolo Giorgini (2013): Specifying and
Reasoning over Socio-Technical Security Requirements with STS-Tool. In: ER, pp. 504–507. Available at
http://dx.doi.org/10.1007/978-3-642-41924-9_45.

[16] SHIELDS project (2013): Security Vulnerability Repository Service (SVRS). Available at https://svrs.
shields-project.eu/SVRS/.

[17] SESAR Joint Undertaking (2014): Single European Sky ATM Research (SESAR). Available at http://www.
sesarju.eu.

[18] University of Trento (2013): Website of the Socio-Technical Security modelling language and tool. Available
at http://www.sts-tool.eu/.

[19] Christian Wolter, Michael Menzel, Andreas Schaad, Philip Miseldine & Christoph Meinel (2009): Model-
driven business process security requirement specification. Journal of Systems Architecture 55(4), pp. 211–
223.

[20] World Wide Web Consortium (W3C) (2013): Web Services Description Language (WSDL) 1.1. Available at
http://www.w3.org/TR/wsdl.

http://dx.doi.org/10.1007/978-3-642-36285-9_66
http://dx.doi.org/10.1007/978-3-642-36285-9_66
http://www.brucker.ch/bibliography/abstract/brucker.ea-framework-2013
http://www.brucker.ch/bibliography/abstract/brucker.ea-framework-2013
http://www.eurocontrol.int/swim
http://www.eurocontrol.int/swim
http://activemq.apache.org/
http://activemq.apache.org/
http://www.eclipse.org/downloads/
http://www.eclipse.org/downloads/
http://dx.doi.org/10.1109/ARES.2009.110
http://doi.ieeecomputersociety.org/10.1109/ARES.2012.13
http://doi.ieeecomputersociety.org/10.1109/ARES.2012.13
http://dx.doi.org/10.1109/ARES.2013.57
http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/BPMN/2.0/
http://dx.doi.org/10.1007/978-3-642-33999-8_48
http://dx.doi.org/10.1007/978-3-642-33999-8_48
http://dx.doi.org/10.1007/978-3-642-41924-9_45
https://svrs.shields-project.eu/SVRS/
https://svrs.shields-project.eu/SVRS/
http://www.sesarju.eu
http://www.sesarju.eu
http://www.sts-tool.eu/
http://www.w3.org/TR/wsdl


14 Threats management throughout the software service life-cycle

[21] Bo Zhou, David Llewellyn-Jones, Qi Shi, Muhammad Asim & Madjid Merabti (2013): Prototype for design-
time secure and trustworthy service composition. In: Consumer Communications and Networking Confer-
ence (CCNC), 2013 IEEE, pp. 847–848, doi:10.1109/CCNC.2013.6488561.

[22] Bo Zhou, David Llewellyn-Jones, Qi Shi, Muhammad Asim, Madjid Merabti & David Lamb (2012): Secure
Service Composition Adaptation Based on Simulated Annealing. In: 6 th Layered Assurance Workshop,
p. 49.

http://dx.doi.org/10.1109/CCNC.2013.6488561

	Introduction
	Approach description
	Case study: Air Traffic Management
	Knowledge management through a threat repository
	Requirements engineering
	Service design
	Model transformation
	Threat response recommendations
	Rules definition

	Runtime management
	Notifications
	Dynamic adaptation


	Discussion
	Conclusion
	Acknowledgement

