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Safety/security convergence

Why Petri nets, SAN and BDMP

Formalism description

Use case: security of a metro station

Formalism description

Use case: a pipeline
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: I : |
l Safety: | Security:
- accidents, failures | Cyber-attacks }
Industrial systems (.
are more and !
more complex and !
interconnected / m Safety and security domains historically separated
/
2 ! /& Industrial systems targeted by cyber-attacks
S, o /
:i"__f-—,z@‘ / .
A f’““%@ ;. Large consequences on the system’s environment
R B /
/ m Their requirements converge for complex systems
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Terminology
® Safety and security (SEMA referential) [1]
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[1] L. Pietre-Cambacedes and C. Chaudet, "The SEMA referential framework: Avoiding ambiguities in the terms “security” and

“safety”," International Journal of Critical Infrastructure Protection, Vol. 3 Issue 2, pp. 55-66, July 2010. - eDF
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Safety and security

. e
( ( \
. |
| — |
- e /
® Differences ® Similarities
s Random vs intelligent s Protection aim
m Stability vs evolution s Risk = fundamental notion
s Access to information = Not "additive”
s Vocabulary = Importance of human factors

[ Synergy between the two communities: possible & desirable J
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m Antagonism
s Conditional dependence
s Mutual reinforcement

s Independence

m Correctrisk evaluation

m Cost optimization

q
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Dynamic

®» We need a holistic approach
® Single model describing both safety and security aspects

® State of the art [2] identified the following dynamic graphical
formalisms:
m Stochastic Petri nets and SANs
s BDMP
s Dynamic Bayesian nets

® All of them can be simulated and have a probabilistic basis

®» Formalisms too specific of one domain have been discarded
(e.g. Mobius/ADVISE)

[2] A Survey of Approaches Combining Safety and Security for Industrial Control Systems
Siwar Kriaa, Ludovic Pietre-Cambacedes, Marc Bouissou, and Yoran Halgand

q
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SPN & SAN

Stochastic Petri Nets and
Stochastic Activity networks
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» Standard SPN must be used in a bottom-up manner
® Patterns can ease the model construction
® The resulting model is flat and lacks structure

® Assessing methods:

s Markovian Petri net => all Markov analysis methods
s Non Markovian => Monte Carlo simulation

Reminder: "Iingredients" of GSPN

inhibitor
arcs
Tokens
PY Transitions
Weighed (instantaneous or
arcs with random delay)
Places

g
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Example taken from [3]

i Model A . P i _ ModelB" .
: I s Y 5 Connecting Model A to Model B
\outlnterface T 1 TP T L ininterface/ Well suited for describing a sequence
. J‘Iar.ri-i oo init ___*.‘.rdﬂ _::‘ﬂd' .
A M%—ﬂ Attack pattern (single phase)
- Init glan Altacking end
InputEven FalseMegative
":_h_‘.:'i.‘vem de’fec!edi"i v | Faulty sensor
detected

...... .,‘

down

up fall NoFalseNegative

el md” Start End

“odare ] O 'ﬂ Single phase intervention
Start End

[3] Flammini et al. A Petri Net Pattern-Oriented App  roach
for the Design of Physical Protection Systems. Safe  comp 2014
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Assembling
patterns
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(00 ® Theoretically, unlimited modeling power (Turing machine)

X ® Not suited for representing structure functions
(nor instantaneous far reaching interactions)

® Spaghetti plate syndrome => validation is very hard

11
© IQ\\ZI

5 objects 16 objects

C=AandB
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Stochastic Activity Networks [4]

te Edit View Elements Help _ ﬂ
| o a e v SAN are strongly linked to the tool Mobius = ~
....................... Ty e .....,_..._(formerly UlraSAN) . ... .

---------- _ Jain v wramn wrann wnail Jain T RTA 2 wr| :Sl_lt:n'ru:u:iel S Submodel | | Submodel TN M
Chgnmel 4. - Ehannel 2~ “Adjudicator Arversary T-Conf_channel
: Submodel | Submaodel . Submodel | Submodel - Submaodel - Submaoclel .
CBW channel 1. . configuration_channel_1. -Control_conf channel_1. - SW .channel_2. . . -configuration_channel 2. . Control_conf_channel 2. - 00000 oo

3
. Mébius Rep/Join Model Editor 2.4 A ﬁﬁ
Mdbius L
ooy, Div_SW Version Number: 13 iy

[4] W. H. Sanders and J. F. Meyer, "Stochastic Activity Networks: Formal Definitions and
Concepts" Lecture Notes in Computer Science no. 2090, pp. 315-343. Berlin: Springer, 2001.

L}
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® Activities (= transitions) can have several outputs (probabilistically
chosen)

® Input gates: contain the definition of a Boolean function of the input
places marking that defines the enabling of the activity, and the
modification of the input places marking when the transition fires

® Output gates: contain a set of actions to perform on output places when
the transition fires

® Input and output gates are defined using C++ syntax => the graph can
"hide" a lot of information

Output gate
Places

Input gate
Transition with two
output cases

4]
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Communication between submodels

® Shared places (not apparent on the GUI)
®» Shared variables

File Edit View Elements Help

HDDRIONN=NEM

abd

-1
..................................... Safe_.g teafestatez
Configuration_state |2
Sygtem_@}{ T ST ST ST US Gate 1 ..... ..........................
Inpu T o Unsafe_state ; | 4
Unsafe_Gate
Repair_unsafe ® )
CCF_actve  coF_propagate
4 | il 3
. Mobius SAN Editor 2.4 Sﬁ o)
Mabius q: 4
1]

Ty
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"' ) » Can solve the problem of structure function representation
- (but not graphically)

' ¥\ ® Instantaneous far reaching interactions? Maybe, with very
- complicated input and output gate functions

® In a"normal" use

- m Lots of small spaghetti plates with sauce 4’ =>
- validation is still very hard

a Sauce can be hot chili!
(input and output functions, shared variables are hidden)

q
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BDMP

Boolean logic Driven Markov Processes
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E RELIABILITY
EMNGINEERING

& SYSTEM
SAFETY

at Gomb'\nes

Q v Dynamic

ﬂ é v Readable
v" Tractable

qew formalism th

a .
advaﬂtages o\s- Boolean 109i¢

e
MarkoV MOP= ~ processes

Driven l‘;\t/\yE ngineering and

= Invented and used at EDF (NPP safety,
substations, data centers reliability,...)

= Complete theory and software framework

[5] L. Pietre-Cambacedes, M. Bouissou, Attack and defense dynamic modeling

with BDMP. MMM-ACNS 2010, St Petersbourg, September 2010. <~ eDF



BDMP can be used to
model any Kind of

Repairable or not
Multiphase
Multistate




Tools associated to BDMP formalism

7 YAMS
| (Monte-Carlo
‘. simulation) /

L W )
O

-

Graphical modeling by the

e urents VKO BachuplThese/SOMP e secuctd - Trnvm s Mars Bauisscu

analysts
it

Qualitative/quantitative results:

Figseq - ordered list of sequences
(path - probability of attack success
model x exploration) - mean durations

KB3

(textual)

- etc.

, FigMAT-SF |
| (matrix-based !
solving) ;

Knowledge
bases 4
(incl. BDMP)

* And Petri nets!

Download: http://sourceforge.net/projects/visualfigaro/
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RAS ownership

N

Logged into the RAS

VAN

Wardialing RAS access granted

/\

AND

/1\ x
Authentlcatlon by password Vu?y found and exploited
Brute force Social Vulnerability Vulnerability
engineering identification exploitation

J
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RAS attack BDMP — Step O (attack just started)

RAS ownership

e
Logged into the RAS

1

Wardialing Logged into the RAS

PO

Authentlcatlon by password

/
&

Brute force

Vulnerability found and

NI
9 &

Social Vulnerability
engineering identification

exploited

&)

Vulnerability

exploitation
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RAS ownership

N

Ao

1
Logged into the RAS

5

Wardialing RAS access granted\
OR AND
) J
Authent|cat|on by password Vulnerability found and exploited

£ %

Brute force Social Vulnerability
engineering identification

g
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RAS ownership

N

AND

1
Logged into the RAS

N

Wardialing /R'ASaccess granted\
OR AND
) x
Authentlcatlon by password Vulnerability found and exploited

N /0
® B o (&

Brute force Social Vulnerability Vulnerability
engineering identification exploitation
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RAS attack BDMP — Attacker’s objective reached

RAS ovc{nership
AND

e
Logged into the RAS

a
&

Wardialing RAS access granted
\\
OR AND
Al A
Authentlcatlon by password Vulnerability found and exploited

7N
&

Brute force Social Vulnerability Vulnerability
engineering identification exploitation q
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An important mechanism of BDMP: filtering of
relevant events

RAS ownership

@

AND

1
Logged into the RAS

a

If one of these
leaves is realized, @
|t makeS the Othel‘ Wardialing RAS access granted

one irrelevant and
thus inhibited

\
o

l I
/7
Authentication by password Vulnerability found and exploited

© &

Brute force Social Vulnerability .
engineering identification 3 :eDF
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SuccessWardialing

-

A5

®

Yy
PotentialWardialing

[RRRY
[N

Inhibitor arcs —
needed to represent
the top level trigger !

Inhibitor arcs
needed for irrelevan
event filtering e

L
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Principles of sequences exploration Iin
a locally defined Markov chain (Figseq)

System model (BDMP or simulation model):

- events that may occur and
Target : set of system states

consequences on system _ L .
= Truncating criteria : probability,
rocess transitions number, ...
Parameters Mission time

Initial state

Sequence : /
succession of events
— Event : - failure, repair,
- any change of the

system state

System state

Stop on target

Absorbing state

Stop on truncating criteria g‘QeDF
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m Efficient sequence exploration with trimming
Probability to reach the objective in a given time

Overall mean time to the attack success
Probability of each explored sequence
Ordered list of sequences

0.55

1.07 x 10s

Cf. hereunder

Sequences Probability in | Average duration L
o L Contribution
Attack steps mission time after init.
[Wardialing, Bruteforce] 0.2717 4.878x10 0.4877
[Wardialing, Find_vuln, Bruteforce] 0.1272 9.7561x%10 0.2329
[Wardialing, Find_vuln, Exploit/uln] 0.1272 9.7561 x10 0.2329
[Wardialing, Social_eng.] 0.0136 4.8780 X10 0.0249
[Wardialing, Find_vuln, Social_eng. 0.0064 9.7561 %10 0.0116

q
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Fixed probabilities = (dynamically) covered by stochastic processes
Monetary cost = scenario cost, average attack cost

Boolean indicators (specific requirements, properties)
Need of internal knowledge, internal support

Need of specific tool, piece of information
- Characterization of selected scenarios

Minimum attacker skills

All computable thanks to the Attack tree structure

q
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An example In safety: system to be modeled

GRID

N

CB up 1 7 CB up 2 |
diesel generator

transfol transfo?2 ‘

CB_dw_1 CB_dw_2 K A CB_dies
|

line_1 line_2
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The BDMP In KB3

|7 KB3© EDF 2000-2010 - [C: /KB3Data /db/DBv17 /cas tests IMDR-S’dF.mﬂb:i] B = |EI|£|
Fle Edit Insert View Tools Draw 2

CledE|X s &lcaEBDE=0r2Aleras = czEeEEn R0 nnE
I Currert profile - |Profill | Frofile ] Yariants | Current visualization  Mone -
EM Damneng,-q Infarmation Schéma: |
Objects | Data I F'ru:u:g:ssingl Layout
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B wees.even i~ Qe B RS JZ R A v A R il R A S L i
" GEID B _CE mp 2 B UE dw 2 UE_up 2 Tramfol UE dw d EC_CE d&: EZ d&r ks _muazshr UE diue

1l

|
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< [ o |l[]« | ,




UE_1
]
AND
I
‘ AND 1 I
Not req.
'
>
OR AND
Al ‘
|
LossOfLine_1 LossOfAllIBackups
1 1 !
N7 N7 N7 Not req. Not req.
- - - . .
ZAN 7N B Z AN
CB_up_1 Transfol CB dw_1 OR OR
s s
|
LossOfLine2 LossOMieselLine |
I Not req.
Not req. Not req. Not req. Not'req. ' a
' ' '
1
! ! ! ! N} 17
Nz 4 4 4 - y
- - - - |
ZAN ZAN BZENTZAN AN S
; dies_generator
GRID CB_up_ 2  Transh2  CB dw 2 CB_dies -9
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!
N7

2

GRID

UE 1 l
]
AND
\
‘ AND_1 ‘ (
J\ >
/OR AND
1. |
|
LossOfLine_1 LossOfAllIBackups
! ! 1
N4 \l7z N4 Not req.
y _ y '
2N ZN TZ AN
CB_up_1 Transfol CB dw_1 OR OR
/\\ /\\
|
LossOfLine2 | LossOfMieselLine |
| Not req. Not'req.
'
1 !
¥ ¥ ¥ N oI
4 4 4 -
- - - |
Z AN AN B A AN A
: dies_generator
CB_ up_ 2  Transh2  CB dw 2 CB_dies -9

On demand failures are not modeled (here)
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or,

|
1
LossOfLine_1

1
Nlr

AN

Transfol

F
AND

LossOfAlIBackups

R,
‘or,
1

LossOfLine2
1 1 1
N7z Nz Nz
ZANS 7 AN B AN
CB_up_2 Transfo2 CB_dw_2

‘ LossOfMieselLine ‘

!
Nz

7S

CB_dies

!
Nz

AN

dies_generator
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/OR\

e
1

‘ LossOfLine 1 ‘

! ! 1
Nls N7z N7
ZAN TRZ AN T 7N
CB_up_1 Transfol CB_dw_1

LossOfAllIBackups

R
LossOﬂ_irlleZ

A l/ Ay l/ AY l/
S BRZAN ERZAN
CB_up_2 Transfo2 CB _dw_2

[

‘ LossOfieselLine ‘
1
1 1
N2 N7
ZAN AN
CB_dies dies_generator

@
& TEeDF



UE_1
]
AND
I
AND 1 I
Not req.
: ’
/\\ : I
1
LossOfLine_1 LossOfAllBackups
1 1 1
N7 \ |7 N\l Not req.
y y ) '
ZAS T AN EEY AN -
CB_ up_1 Transfol CB_dw_1 f OR\
| /‘\\
1
LossOfLine2 LossOfMieselLine
I Not re
Not req. Not req. Not req. Notlreq. ' a
1 ' '
1
N ¥ ¥ ¥ N 1
N7 A4 \Nls - Y
- - - - }
2N ZAS 2 B Z XN B A G
: dies_generator
GRID CB_up_2 Transfo2 CB_dw_2 CB_dies -9
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® The total independence of leaves of a fault-tree is
replaced by simple dependencies.
Each leaf has two modes .
required/active (1) and not required/idle (0).
Transitions between those two modes define
Instantaneous states in which probabilistic choices
can be triggered.

®» Any Markov process can be associated to each mode

of a leaf
. B

Formalism
“Boolean logic Driven Markov Process”
(BDMP)

q
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Graphical representation of a BDMP

[

secondary

top event

main top event .
trigger

D —

1 2\

triggered Markov processes Pi

A gate/basic event is TRUE when:
- a failure is present (for safety related parts)
- an attack is successful (for security related parts)
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Mode O Transition Mode 1

! SeW .
@<“®F<—>F @“@

failure mode possible only if in required mode
A A

Al a— SeoW >

o @< H @ Fo F @< H @

fallure mode with reduced rate if in non required mode

S 1 S-W(Ay)orS—F ()
: F-F
@< H @ { SW @ d @
F<F

on demand faillure mode

L Graphical representation Working, Failed, Standby

in the tool KB3-BDMP ‘
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BDMP for attack modeling — Types of leaves

® Attack scenarios = 3 kinds of security leaves @
m Modeling of attacker’s actions
AA (Attacker Action) leaves, timed leaves (1/ A = MTTS) TSE
m Modeling of security events @

TSE (Timed Security Event) leaves, timed as well

ISE!
ISE (Instantaneous Security Event) leaves, instantaneous (y)

@ Successful attack

AND

€

Attack by mahc10us attachement

&8

Email preparation Attachement execution Successful
and sending by the target payload execution ~ ~ €eDF




Mode O - idle

Transition Mode 1 - active

& | © S,

Attack that will succ

PO
ses | ©@——0®

eed after going On some time

| ®
@ ®@®

Timed security ever

P—-> NR
NR <& NR
RoR | @@

It, not under dttacker control

& ® ®

{ P->NR (1y) pr P> R (y)
R—-R

e B ®

Attack that may su

cceed at the mode change {0

L Graphical representation

in the tool KB3-BDMP

Potential, Success, On-going
Not Realized, Realized

© S EDF



Definition of required/active mode in a BDMP (1)

® Very powerful concept, because it is hierarchical

® Requirement signal transmitted by the branches of the
fault-tree

a gate or leaf is in mode 1
except if it receives a
signal of mode 0 from :
all its fathers or

directly via atrigger

Makes it easy to model cascade
standby redundancies/hierarchy
of attack steps

q
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® The origin of a trigger can be any Boolean function of the
states (true or false) of the leaves

® This origin is often a gate corresponding to a sub-tree of
the fault-tree defining the structure function of the system,
but it is not compulsory




Use a «Petri leaf», associated to an arbitrary Petri net,
the transitions of which are enabled/disabled
according to the mode (required or not required) of
the leaf

Info: leaf In state
true/false

Petri leaf

* 5 €DF



® After a failure of f2, all others fi
become irrelevant

® An event is said to be irrelevant if
the propagation of the effects of
its fulfillment in the fault-tree only
concerns gates which are
already in the «true» state

Number of sequences leading to top event r
=n ifirrelevant events are trimmed: (f1,h;f2 ,h...)

Exponential function K( n) if they are not trimmed - (f1,h; f1,f2,h; f1,3,h...)

K(n) = n + n K(n-1).
For example, K(10) = 9.864.100, and K(15) > 3.5 10%?

q
 TEeDF



Effect of irrelevant events trimming on
Markov chain size

64 states
340 transitions

8
/lw ~

36 states
Q 140 transitions

Supposing all leaves represent repairable components

& TEeDF



® Trimming of irrelevant events:

a Non repairable system -> dramatic reduction of the Markov chain size, with
exact calculation of reliability

a Repairable system -> dramatic reduction of the Markov chain size , with
approximate calculation of reliability and availability

® Note that in many cases the model with trimming is more
realistic than without
(e.qg.: electrical components, mutually exclusive failure
modes, competition between attack techniques...)

&
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s The IOFA distinction:
Initial / On-going / Einal / A posteriori

s Changes In the parameters and/or the leaves
behavior

s Introduction of a “Detection status indicator” D,

m New Boolean function of the time, associated to each
element of the BDMP

]
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Theoretical framework extension -
overview

® Introduction of a “Detection status indicator” D,

® Some change in the modes, related to this new dimension
m “Active” is divided in “Active Undetected” and “Active Detected”
s Allows for parameter change, and even leaf cancellation

m The mode is selected based on XD,

XD, 00 01 10 11
Mode | Idle (I) | Active Undetected (AU) | Active Detected (AD)

® Extension of the leaves’ Markov models
m New states and transitions, modeling detections & reactions effects

s New probability transfer functions

[ J
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Idle Mode Active Undetected Mode

-~
~
7 ~

/ Success \\ 1
/ Twith ) L TYDE)

. Potential
\\ Detection //

Success
Undetected

On-going
Undetected

Potential Success

Undetected

Undetected

Potential Success /// N e \\\\\ / S
Detected Detected s N ¥ \ -
I Detected | I ! Success \I
Y, | .\ Detected 1
/ ¢ A
\\ // \\\ //

N 7 N
\\\_—‘// D(_l o TNl ’//
N — i A_;/

Active Detected Mode Transfer functions
(PU)={Pr(OU)=I — ypw, Pr(D)=ypw, Pr(SD)=0, Pr(SU)=0}

_ (PD)= {Pr(OU)=0, Pr(D)=1, Pr(SD)=0, Pr(SU)=0}
Qn-going uccess ) (SU)={Pr(OU)= 0, Pr(D)= 0, Pr(SD)= 0,Pr(SU)= 1}
(SD)={Pr(OU)= 0, Pr(D)= 0, Pr(SD)= 1,Pr(SU)= 0}

[
fO—»lO

Detected : Detected

[..]

‘
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@ 1dle (Z(') ) Pr = 14 Active Undetected (Zio) .
///Q/ucce\s\s\\\ '\

Success
Undetected

Potential
Undetected

On-going As/ND / with | 1-vp) [ Success |’
Undetected \ Potential ] Undetected /
' Detection

\\\‘-’/// ,YD(F)

XD(A}'

. s
Potential Success -7 \\ | Si—1
Detected Detected A /II/ Success R

] S
/ ‘. Detected |

\\
\\.\ //
D1 N

N

f§ 1o PU=PHOU=1 ~ 0, Pr(D)=ppay, PriSD)=0, PrSU=0} s tive Detected (Z.(1)
(PD)= {Pr(OU)=0, Pr(D)=1, Pr(SD)=0, Pr(SU)=0}
(SU)=1{Pr(OU)= 0, Pr(D)= 0, Pr(SD)= 0,Pr(SU)= 1}
(SD)=1{Pr(OU)= 0, Pr(D)= 0, Pr(SD)= 1,Pr(SU)= 0}

g
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Pr=1 Active Detected (Z,,(t))

Pr=1
P N N
N s~ Success 1- / :
On-going S/ND / with \ YD(F) Success . XS/D ’ \
Undetected \  Potential | Undetected ’ On-going Success
\\\ Detection | Detected : Detected I
[ / \ I~ SH
/ — —
| Detected ) / Success \/ Pr=1 Pr=1
\ - //' \ Detected /i
\ /

fio.1(OU)= {Pr(OD)= 1, Pr(SD)= 0}
(D)= {Pr(OD)= 1, Pr(SD)= 0}

(SD) = {Pr(OD)= 0, Pr(SD)= 1} Despite D and SD having null durations, these lares

necessary to specify the transfer function, thester
(SU) - {P”(OD): 0, P’”(SD): 1} being potentially triggered by the leaf itself.

The detection has occurred at a different leaf

@
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i i i [ [
{f0—>10’ fO-»ll’ flO-»ll’ flO-»O’ fll-»O}

flilq 10 IS not defined: a detected attack never comes back undetected

Attacker Action (AA)
Timed Security Event (TSE)

Instantaneous Security Event (ISE)

{Z(I) (t)’ZZi.O(t)’ZZi.l(t)’ fOi—>10’ f(i-»ll’ f1i0—>11’ fliO—»O’ f1i1—>0}

&
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m Strictly local incidence: straightforward but not satisfactory
s Global incidence: meaningful and direct implementation

s Extended and selective reactions: reaction triggers (not formalized)

&
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(4,r, T, P)
A={E, L, g}

m asetE=GUB, where Gis a set of gates and B a set of basic events
m (E, L)adirected acyclic graph, with L a set of oriented edges (i, |)
s a function g, defining the gates (g:G >N*, with g(i) the gate parameter k)

q
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» P{P}
= {Zé) ('[),Zio(t),Zil(t), f(LlO’ chlli fliOall’ flioao’ flilaO}
s Zy(t), Z),(t) and Z(t) three homogeneous Markov processes

For kin {0, 1} (modes), Akstate -space of Zk(t)

S< [] /% subset of states for which the leaf is true
Dl'( [ Ak subset of detected states

0 1:cLlo(X)[...] flllﬁo(x) “probability transfer functions” with

CIx [ Ab f | 10()() IS a probability distribution on Aiiosuch that
x0S,= Y. DSI(fo 0()(j) =1andx 0D = Y . (fo_1,(0))(j) =1

[....] X5 {fol_,ll’ fllo_)lj_i f]_io_,O’ flil—>0}

]
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s Structure functions (S)

Oi0G, S= >XS=9()

jOsong(i)

DJDB’ SEZ

iLE

§<_ [] S>J< , with X; = 0 or 1, indicating the mode in which P; is at time t
j j

m Process selectors (Xi)iDE
If i is a root of 4, then X, =1 else

X, ==[(OxOE,(x,i)0L= X, =0)C(CXOE/(x,i)OTLCS, =0)|

s Relevance indicators (Yi). ¢
If i =r (final objective), then X; =1 else

Y =(CxOE/(x,i)OLCY,CS, =0)C(CyDE/(i,y)OTLCS, =0)

s Detection status indicators (Di)iDE

0B, D =(z,, 0D, )o(goB/j#i0D, =1) GOG, D, =(00B/D, =1)




s Theorem 1: (S)(Xi)(Yi)(Di)iDEare computable whatever the BDMP structure

m Theorem 2 : Any BDMP, defined at time t by the modes and the P, states, is a
valid homogeneous Markov process

After attack step P,, all the others P, are not relevant
anymore: nothing is changed for “r” if we inhibit them

N ——
@ The number of sequences leading to the top objective is

5 o n, if we filter the relevant events ({P,,Q},{P,,Q}....)
@ o exponential otherwise ({P,,Q}.{P,,P,,Q}, {P1,P3.Q},...)

s Theorem 3:if the P; are such that 0i OB, Ot 0Ot'>t, S (t) =1= S (t') =1*
Pr(S(t)=1) is unchanged whether irrelevant events (Y;=0) are trimmed or not

* This is always the case in security (~ non-repairable in reliability studies) "“‘EDF
R N



® Concise, hierarchical and powerful formalism

«__» ® All dynamic behavior can be inferred from graphical
) representation => relatively easy validation

v+ ) ® BDMP (just like fault trees, Petri nets etc.) are difficult to re-
- use. True re-usability can only be achieved with a tool like KB3
that generates automatically calculation models

' ¢+ \ ® Combinatorial explosion, of course, still exists. The largest
= BDMP ever processed with sequence exploration had around
300 leaves. With MC simulation, problem of rare events.

'\ ® BDMP are not good at all at modeling systems in which objects
~ ' are created, destroyed, or even simply change places

]
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CASE STUDY
SYSTEM ARCHITECTURE

)) C HMI
Master CC — Unidirectional Wired Link
g ~——-» Unidirectional Wireless Link
)) (C = =+ —— - Bidirectional Wireless Link
il T # = S
- % g S
- F he. ™

%‘ Possible access of attacker

e % .9 p Pressure meter
= i SN e F Flow meter
- e ~
s = 7 -
£ ¥ "
RTU -———————— = RTU - —— —— - - > @& RTU
* “\ _.é,f h =~ f/ /' b e
. \ . V[~ % - L e
- -~ F ~
D ® 10, NO1® ® © | ®
Y P i
( = °=0 ¥ IO s ]
B
pump Shut-off valve

Case study of a pipeline and its control system

Example taken from: S. Kriaa, M. Bouissou et al. Safety and security modeling using the BDMP

formalism: case study of a pipeline. SafeComp'2014 .
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CASE STUDY \

BDMP MODEL
e m

o T C_L

- - possible_scenarios

/£ & ™ o

Triggers from this OR gat attack_occurence 5
toits sons are '”Vegs it attack_protection_syst_then_pipeline_break wpefffie_break_and\protection_failur
order to ensure nytual - - - = Y
exclusion betV\;een these o N\
sons. -

pipeline_bre:

AND A\

Waterhammer_attack \

pipe_break_accidentall

access_to_RTU

otection_failure
1day e \

m closing_valve\
'

1 No_instructiod\ fom_RTU
access_to_CC - m I
7 days r1 /
falsify_data_sent_to_other_RTUs '

pumps_on_demand_failure_to_st
' O &
valves_on_demand_failure_to_clo
: : S
% falsify_instructions_sent_to_equipmen

on_demand_failure!

atja€k_prepdtion3

a _preNarationl

&

No_RTU_reasQn
falsify_sensors_measures l
falsify_CC_instructions
falsify_data_sent_to_CC **

fox| ’

‘ r send_{alse_instructions_to_RTU l
desactiyfte_rd&ex_action % /

‘ & report_false_data_to_CC

-

, faulty_operator
No_reflex_action_activated_by_RTU }

Page_Principale / faulty_sensor_measur
’ . %

&

. No_reflex ion_aYivated_by_R

~instryfeti

o\, ffom_CC
No_reflex_action

Page_Principale

/ inter_RTU_communication_los'

N

jamming_com_between_RTUs -

7
\ No_reflex_action

CC_RTU_communication_los
7 -
~

Sx

Control_Center

”
TS~ — = = —gsecurity BDMP model ety

@
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CASE STUDY
QUANTITATIVE AND QUALITATIVE ANALYSIS

0 Model leaves <-> parameters estimated based on assumptions
aMTTS -> security events
aMTTF -> safety events
a Probability -> instantaneous events

0 Pollution probability ~ 2e-2 for a mission time of one year

0 Attack scenarios are the most likely to happen

& TEeDF



CASE STUDY
QUANTITATIVE AND QUALITATIVE ANALYSIS

Transitions

Name Rate
attack occurrence 2.28e-5 1.31e-2 0.67
access_to_RTU 0.0208
understand_syst_operation 0.0208
falsify_data_sent to CC 0.6
falsify_data_sent to other RTUs 0.6
falsify_instructions_sent_to_equipments 0.7
high_pumping_pressure_activation 0.7
closing_valve 0.7

Most probable attack scenario

* 5 €DF



CASE STUDY
QUANTITATIVE AND QUALITATIVE ANALYSIS

Transitions
Contrib.
Name
attack occurrence 2 28e.5
access to RTU 0.0208
understand_syst operation 0.0208
falsify_data_sent_to_CC 0.6
falsify_data_sent_to_other RTUs 0.6 4.03e-4 0.87
falsify_instructions_sent_to_equipments 0.7
no_realization(high_pumping_pressure_activation) 0.3
pipe_breaks accidentally 1.14e-5

Most probable hybrid scenario

* 5 €DF



CASE STUDY
QUANTITATIVE AND QUALITATIVE ANALYSIS

Transitions

Name Rate

pipe_breaks_accidentally 1.14e-5 1.98e-5 le-3

. _ 4
good(CC_RTU_communication_lost) 0.9995
0.999886
good(Control_Center)
0.999862
good(RTU)
0.99977
good(faulty operator)
: 0.00023
faill(faulty_sensor_measure) 0.9993

good(inter RTU_communication_lost)

Most probable accidental scenario

& TEeDF



CASE STUDY
SAFETY AND SECURITY INTERDEPENDENCIES

= Mutual reinforcement

m Probability over 1 year

1]

with reflex action without reflex action
Pollution probability with and without reflex action

=>» The reflex action decreased the pollution probability by 13%
=>» To succeed into causing pollution, the attacker has to deactivate the reflex

action.

0,07 ~

0,06

0,05

NB: Reflex action = shutdown decided by the set of RTUs without intervention of
the centralized control system
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CASE STUDY
SENSITIVITY ANALYSIS

0.12 - Pr(pollution)

y=0.9
0.1 -
0.08 -
0.06 - e=¢==without attacks
e==with attacks
0.04 -
0.02 -
0 ; ' ’ O time(year
0 2 4 6 8 10 12

Pollution probability without attacks and with attacks without detection

- Security-related scenarios increase considerably the pollution probability
— Conditional dependency between safety and security

& TEeDF



CASE STUDY
SENSITIVITY ANALYSIS

0.12 - Pr(pollution)

y=0.5

o

0.1 -

0.08 - .
e=0==without attacks

0.06 =l=with attacks
efe=o00d detection

0.04 bad detection

0.02 |

0 &‘ 1 time(yea
0 10 15cs)

0.12

0.1

0.08

0.06

0.04

0.02

Pr(pollution)

y=0.9

=0==without attacks

==with attacks

efe=o00d detection
bad detection

10

Effect of two detection strategies on pollution probability
bad detection: detection and reaction measures chosen arbitrarily

time(yea
15

good detection: detection and reaction measures placed on the elements appearing in the most
probable scenarios

y. detection probability
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Conclusion and perspectives

= |[mportance of considering safety and security together in the risk
evaluation and management process

= Petri nets and SAN: unlimited modeling power in theory, but in practice,
limits due to validation problems

= BDMP still have a good modeling power,

while being easier to use

- Readability — all essential information is graphically represented

= Top-down approach, each "refinement" is manageable

- Qualitative and quantitative analysis

- Can easily be extended to take different probability distributions into account
(requires Monte Carlo simulation). Cf. McQueen et al.

- Qualitative and quantitative analysis => identification of:
= the most probable scenarios
= the most vulnerable points in the system
= the best detection and reaction strategies

& TEeDF



= Common limitation of all these dynamic models
m Estimation of security metrics (MTTS...)

= Perspectives

m Robustness of the quantitative results

m Deal with uncertainties related to security parameters (uncertainty
propagation)

q
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QUESTIONS?

http://marc.bouissou.free.fr/
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