

www.thalesgroup.com

Towards automating the construction & maintenance of attack trees: a feasibility study

Stéphane Paul - Thales Research & Technology Graphical Models for Security (GraMSec) workshop, ETAPS, Grenoble, April 12, 2014

12/04/2014 - TRT-Fr/STI/LSEC/SPA,14/0019

Context

• Why is there industrial interest in automating the construction of attack trees?

Part n 1: High-level principles of the automation approach

Overview of how it could be done

Part n 2: Example

Automating a simple example (1st two steps only)

Conclusion

Information systems ever more complex... blah-blah

- …in an open interconnected world… blah-blah
- ...security concerns are rising... blah-blah
- ...risk management... blah-blah
- ...attack trees... blah-blah

Industry challenges

- Complexity
- **•** ...

Example of complexity for industry

2/04/2014 - TRT-Fr/STI/LSEC/SPA.14/0

Complexity reflects on

- Tooling, and...
- Humans

One (partial) solution: introduction of Attack Trees

- Recognised Threat & Vulnerability Assessment Technique
- Extends Classical Risk Assessment Studies*

But...

- Attack Trees also grow big (40+ A4 pages)
- Large Attack Trees are difficult to construct...
- ...and even harder to maintain

*: See Stéphane Paul, Raphaël Vignon-Davillier, *Unifying* traditional risk assessment approaches with attack trees, In Journal of Information Security and Applications (JISA), Information Security Technical Report (ISTR) – To be published.

Challenges with respect to attack trees

Consistency Assurance

- Across Security Experts* (methodology)
 - In space
 - In time
- With System Architecture
- With Risk Management Study

Tool support

- Software Interfaces (APIs)
- Traceability / Impact Analysis
- Formal Semantics / Analyses

Scalability

- Automatic Tree Layout
- Multipage and/or directed acyclic graph support

Is is possible to automate the construction of ATs?

Thales Communications & Security (TCS) is responsible for the overall risk assessment of the European Galileo programme

- Risk identification & treatment is realised through the use of attacks trees (manual process)
 - Risk management process approved by 27 Member States in Sept. 2011
- Feared events are at the root of attack trees
 - The feared events are defined at strategic (i.e. operational) level
- The study considers the operations
 - I.e. people and procedures

Thales Research & Technology reverse-engineered some Galileo attack trees & discussed user-experience*

- 1. Identification of tree structuring principles
- 2. Could it have been automated?

High-level principles of the automation approach

Part n 1

12/04/2014 - TRT-Fr/STI/LSEC/SPA,14/0019

Inputs are required from

- An architecture framework
 - Operational architecture
 - Logical architecture
- A security risk assessment tool
 - Context information including
 - Primary & supporting assets
 - Existing security solutions
 - Threat sources, etc.
 - Feared events, etc.
- A security knowledge base
 - Supporting Asset Types
 - Threats
 - Vulnerabilities, etc.

Structuring principles for constructing attack trees (with feared event at root of tree)

- By system states and modes
- By supporting asset types (e.g. hardware, software, data/control flows...)
- By attack entry points (i.e. supporting asset interface)
- ♦ By threats (e.g. using EBIOS-2010 knowledge base)
- By threat sources*
- By the attack itself

The tree structure is driven by exploitation / ergonomic considerations

- Obj: cascade of exploits with essentially OR gates decomposition
- Heuristic: locate AND gates as low as possible in the tree

^{*:} In Galileo, the structuring principle is:

⁻ by "teleology" (i.e. intentional, accidental, env.)

⁻ by access types (i.e. insider vs. outsider).

Analysis of occurrences of AND gates

- Capture preconditions to enact the attack
 - A change in states and modes is required to enact the attack
 - Usually leads to a Directed Acyclic Graph (DAG)
 - Other preconditions
 - E.g. knowledge about existence, location, etc.
- ◆ Capture post-conditions to make succeed the attack (e.g. ensure stealth attack, allow for repudiation of attack)
 - May lead to a full-blown sub-tree
- Capture redundancy
 - In case of attacks with respect to denial of service / integrity
 - In particular for safety-critical systems

Tree structuring principles (3/3)

www.thalesgroup.com

Practical application to assess automation feasibility

Part n 2

12/04/2014 - TRT-Fr/STI/LSEC/SPA,14/0019

Actualité > **Argenteuil** | \bigsim

Il aurait saboté les freins de la voiture de sa femme

Frédéric Naizot | Publié le 25.03.2013, 07h00

Tree initiation

Step n 1: seemingly easy, but need for semantics...

- Feared events are defined at strategic level (text!)
 - I.e. Feared events are related to primary assets of the operational architecture
 - Scope for primary assets: operational processes + data*
- Feared events are at the root of attack trees

Structuring principles for constructing attack trees

- By system states and modes
- By supporting asset types
- By attack entry points
- By threats
- By threat sources

Feared event: Loss of 'integrity' of 'manual braking' operational process in 'car'

- Artefacts of the operational architecture are mapped
 - Operational entity: 'car' → entry point to system architecture
 - Operational process*: 'manual braking' → primary asset

- Security-related keywords are recognised
 - Security criterion: 'integrity' → entry point to security knowledge base

Consecutive tree (root node only at this stage)

Legend:

Link to architecture artefact:
Link to risk assessment artefact:

Step n°2: structure tree according to system states and modes

Tree initiation (skipped – see paper)

Feared events are at the root of attack trees

Structuring principles for constructing attack trees

- By states and modes
 - Need to relate the feared event (i.e. operational process) with the states & modes
- By supporting asset types
- By attack entry points
- By threats
- By threat sources

Step n 2: which state and mode make sense with respect to the feared event?

Simplified car states and modes (in system architecture)

- 2 states: 'operating' & 'maintenance'
- ◆ 2 top-level modes for 'operating state': 'engine off' & 'engine running'

12/04/2014 - TRT-Fr/STI/LSEC/SPA,14/0019

Running example: Loss of 'integrity' of 'manual braking' operational process in 'car'

State machine and operational activities matrix

Consecutive tree

12/04/2014 - TRT-Fr/STI/LSEC/SPA,14/0019

Consecutive tree

Legend:

2/04/2014 - TRT-Fr/STI/LSEC/SPA,14/0019

Link to architecture artefact: Link to risk assessment artefact:

Conclusions

Significant 'draft' trees can be automatically generated

- A systematic approach is enforced →
 - Completeness
- ◆ The tree 8 top-level layers are normalised throughout the project →
 - Consistency amongst end-users
- ◆ Tree node naming is automated →
 - Productivity
 - Consistency with architecture & knowledge base
- ◆ The lower parts of the tree are left for manual completion* →
 - Adequacy
- ◆ Traceability to architecture artefacts comes as side-effect →
 - Impact analysis
 - Consistency assurance...

*: Where generation is doubtful, annotation of tree nodes may be used to explicitly attract security expert attention (e.g. a threat source is not expected to have access, so threat scenario is expected to be removed because it is irrelevant).

But... the approach is not yet consolidated

- Current work was focused on operational processes / logical functional chains ->
 - Need to study attacks on data
- ◆ Some required design information is traditionally missing in the architecture (e.g. physical vs. logical access specifications) →
 - What trade-off between poor tree generation & enriching the architecture?
- Structuring based on states and modes
 - What depth makes sense?
- Etc.

Conclusions with respect to the use of the Thales AF

- No major issues raised due to Melody-Advance specificities
- Need to assess other architecture frameworks

Conclusions with respect to the use of risk assessment tool (i.e. Rinforzando)

- Links between security artefacts and design artefacts are highly valuable
- Need to assess other security knowledge bases

Conclusions with respect to the use of attack tree tools

Some tools do not scale

QUESTIONS?

Stéphane Paul Thales Research & Technology

stephane.paul@thalesgroup.com

